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The incidence of thyroid cancer has been increasing. After total thyroidectomy of well-
differentiated thyroid tumors with intermediate- or high-risk features on pathology, radioiodine
remains one of the mainstays of therapy for both thyroid remnant ablation as well as for
treatment of metastatic disease. SPECT/CT, a relatively new modality, has been shown to play
a pivotal role predominantly in the post-therapy setting by changing the risk stratification of
patients with thyroid cancer. In the case of radioiodine treatment failure, FDG-PET/CT may
provide prognostic information based on extent and intensity of metabolically active metastatic
sites as well as serve as an important imaging test for response assessment in patients treated
with chemotherapy, targeted therapies, or radiotherapy, thereby affecting patient management
in multiple ways. The role of newer redifferentiation drugs has been evaluated with the use of I-

124 PET/CT.
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ifferentiated thyroid cancer accounts for approximately

95% of all thyroid carcinomas; of these, approximately
85%-90% are papillary, approximately 10% are follicular, and
approximately 3% are Hurthle cell carcinomas or tumors with
poorly differentiated histology.' The most recent American
Thyroid Association guidelines (ATA, 2009) recommend total
thyroidectomy for tumors larger than 1 cm and possible
lobectomy for tumors <1 cm.' However, a recent retrospec-
tive analysis of more than 3600 patients with differentiated
thyroid cancer found that tumors 1-2 cm have the same
disease-specific survival and recurrence-free survival compared
to tumors <1 cm when omitting tumors with aggressive
features such as nodal metastatic disease and extrathyroidal
extension.” Similarly, DeGroot et al” reported a decreased risk
of death and risk of recurrence for tumors > 1 cm in a group of
269 patients with papillary thyroid cancer (PTC) treated with
extensive initial surgery as well as postoperative 1-131 ablation.
The frequency of nodal metastases was the highest in PTC
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(61%), whereas Hurthle cell carcinomas showed a 33%
incidence of distant metastases in a retrospective review of
1038 consecutive patients with differentiated thyroid cancer
treated over a period of 55 years.” Although PTC and follicular
thyroid cancer (FTC) are two distinct histologic types, they
have been studied collectively under the header of “differ-
entiated thyroid cancer.” A retrospective study of 760 patients
with differentiated thyroid cancer (589 PTC and 171 FTC)
showed marked differences in prognostic factors in the two
groups. Patients with PTC are typically younger than 50 years
and have smaller tumors and a higher incidence of lymph node
metastases, multicentricity, and extrathyroidal extension.
Patients with FTC show a higher incidence of distant metastatic
disease and more frequently receive radioiodine. The inde-
pendent factors predicting poor prognosis for the PTC group
were age =50 years, tumors >3.5 cm, extrathyroidal exten-
sion, and incomplete resection. In the FTC group, these factors
were age >50 years and incomplete resection of distant
metastatic disease.” Other studies have concluded that, stage
for stage, the prognosis is similar for papillary and FTCs in
general.”’ Other histologic subtypes of PTC, such as columnar
cell variant, tall cell variant, and diffuse sclerosing variant; more
aggressive variants of FTC; and poorly differentiated aggressive
histologies have a worse prognosis—these tumors typically
exhibit aggressive histologic features such as extrathyroidal
extension, vascular invasion, and tumor necrosis.” Recent ATA
guidelines propose a three-level stratification (low, intermedi-
ate, and high risk) based on the presence or absence of
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aggressive histologic features, presence of local or distant
metastases, and imaging features on post-therapy scans.'

In recent years, it has become clear that many thyroid
cancers are driven by oncogenic mutations. For instance,
approximately 45% of papillary differentiated thyroid cancers
harbor BRAF VO0OOE mutations; other mutations such as RAS
or RET/PTC mutations are less frequent.”'” RAS mutations are
more common in poorly differentiated thyroid cancers."’
Thyroid cancers bearing the BRAF V60OE mutation show
significantly higher FDG avidity compared with BRAF wild-
type tumors.'” These data shed interesting light on the
connection between tumor biology and imaging features and
may also be helpful in designing clinical trials, which would be
discussed later.

Treatment Design and Role of
Conventional Imaging

After surgical resection of the primary tumor, radioactive
iodine (RAI, 1-131) is used in most of the patients'” for both
thyroid remnant ablation and treatment of expected or proven
locoregional or distant metastases.'* Metastatic thyroid cancers
of follicular cell origin retain, to varying degrees, the ability of
normal thyrocytes to take up and retain iodide; this depends
critically on the presence of functioning cell-membrane-based
sodium-iodine symporters (NIS),'” which are active in approx-
imately 80% of well-differentiated thyroid cancers. Few other
cell types (such as salivary glands, lactating breasts, stomach,
and small intestines) possess the ability to concentrate iodide;
therefore, I-131 is a selective, targeted approach for delivering
tumoricidal doses of radiation to thyroid tumors. I-131 can be
particularly effective for radioiodine-avid —small-volume
(<1lcm) micronodular lung metastases from well-
differentiated thyroid cancer, as shown in a study of 444
patients. 1© The efficacy of I-131 treatment, however, is limited
in patients with larger tumors, which are nevertheless often
treated repeatedly with I-131."%*" Not all patients with thyroid
cancer need to be treated with radioiodine. The recent ATA
guidelines recommend radioiodine therapy only for inter-
mediate- and high-risk patients with known distant metastases,
gross extrathyroidal extension (regardless of tumor size), or
primary tumors >4 cm. Radioiodine ablation is recom-
mended for selected patients with primary tumors measuring
1-4 cm and clinicohistologic features predicting intermediate
to high risk of tumor recurrence.

To achieve sufficient iodine uptake into tumor cells, RAI
ablation or therapy requires elevated levels of thyroid-
stimulating hormone (TSH). TSH stimulation can be accom-
plished by thyroid hormone withdrawal or by intramuscular
injection of th-TSH (Thyrogen). Serum TSH levels > 30 mU/L
can be obtained in >90 patients with either method of
preparation, both of which are effective.”' >’ Following appro-
priate stimulation, a pretherapy scan with low activities of
1-123 or I-131 can be performed to quantify the percentage of
neck uptake and is recommended when scan findings are
expected to change management (eg, high residual uptake of
iodine in the neck or visualization of unsuspected metastatic

disease may prompt changes in the amount of I-131 chosen for
ablation or treatment"). ATA guidelines recommend (based on
expert opinion rather than hard data) that low activities of
[-131 (1-3 mCi) or 1-123 (1.5-3 mCi) be used for pretherapy
scans and therapeutic 1-131 activities be administered within
72 hours of this diagnostic procedure. A SPECT/CT before
RAI treatment remains of limited use. Occasionally, this test
may detect iodine-avid neck node metastases, depending on
the extent of surgical resection. However, today, many
surgeons perform a preoperative neck ultrasound and then
resect all nodes that appear suspicious. Any remaining
(presumably small) iodine-avid neck nodes do not change
management, and ablation with RAI proceeds regardless.
Occasionally, a pretreatment SPECT/CT may also detect
(unexpected) distant metastases, which may prompt selection
of a higher treatment activity. Nevertheless, a negative-result
pretreatment SPECT/CT may potentially give false comfort, as
the probability for detecting distant disease is significantly
limited by the low activity used for pretreatment scans. Studies
such as the following should therefore be interpreted in this
context. In a prospective study of 320 patients, preablation
iodine SPECT/CT changed the risk stratification in 15%
patients as compared with recurrence risk estimation based
on histopathology alone. Regional metastases were noted in
35% and distant metastases in 8% of patients. The authors
reported that this led to a change in clinical management in
approximately 30% of patients.”” However, these changes
largely pertained to changes in the amount of RAI adminis-
tered, and eight patients with “unexpected” bulky neck nodes
were referred back to surgery. The latter should be a rather
unusual occurrence when surgeons take advantage of preop-
erative ultrasound imaging and perform a thorough intra-
operative exploration of the tracheoesophageal groove
and neck.

Three approaches to determine the amount of RAI for
ablation and therapy are widely practiced: administration of a
fixed empirical activity, calculation of a maximum tolerated
activity (MTA) (using dose constraints to blood or bone
marrow and lung), and quantitative tumor lesional dosim-
etry."" In low-risk patients, activities between 30 and 100 mCi
[-131 are often administered, which yield similar rates of
remnant ablation.”” > In patients with primary tumors show-
ing aggressive histologic features, such as tall cell, columnar, or
insular carcinoma, higher activities (100-200 mCi) are recom-
mended.! The maximum tolerated radiation-absorbed dose
(MTRD), defined as 200 rads (cGy)N to blood, can be
exceeded in a significant number of patients undergoing
empirical treatments with arbitrary or fixed amounts of
1-131. In a retrospective study of 328 patients, a fixed empirical
treatment with 200 mCi 1131 would have exceeded the
MTRD in 22% of patients 70-79 years old and 38% of patients
aged 80 years or older.”” In another study, empirical treatment
with 100, 150, 200, 250, and 300 mCi of I-131 would have
exceeded the MTRD in <1%, 5%, 11%, 17%, and 22%,
respectively.”' In part, this is related to the fact that many older
patients exhibit somewhat compromised renal excretory
function. Lesional dosimetry, performed with diagnostic
1-124 PET/CT, is the most sophisticated albeit laborious and
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time-consuming approach for treatment planning; its role
would be discussed later.

Following I-131 therapy, post-therapy scans are performed
approximately 3-10 days after the RAI administration. These
posttreatment scans may show additional metastases in 10%-
26% patients when compared with pretreatment imaging, >
although higher numbers were also reported in some studies.
Extensive disease noted on posttreatment scans may alter the
clinical stage in approximately 10%, and clinical management
in 10%-15% of patients.”” " In contrast with the pretreatment
setting, a SPECT/CT may provide meaningful and actionable
information in the posttreatment setting. In a study of 148
consecutive patients (109 postsurgical and 39 with recurrent
or metastatic disease), SPECT/CT provided clear classification
of iodine uptake as benign or malignant, thus eliminating the
need for additional cross-sectional imaging in 20% of patients.
SPECT/CT better characterized clearly metastatic disease in the
neck as well as distant metastases in lung, liver, and bone. “1n
another study of 57 patients, SPECT/CT of the neck deter-
mined nodal involvement more accurately than did planar
imaging and altered clinical management in approximately one
quarter of patients.”® In another study of 151 patients, post-
therapy SPECT/CT of the neck showed lymph node metastases
in 26% of Tlb cancers and 22% of the microcarcinoma
group.”’ In a retrospective study of 147 patients with differ-
entiated thyroid cancer, SPECT/CT improved detection and
localization of 1-131 in nodal and distant metastases as
compared with whole-body planar imaging and changed
clinical staging in 9 of 147 patients (6.1%) and therapy
planning in 3 of 147 patients (2%).”

The antitumor effect of I-131 depends on the amount of RAI
that can be delivered successtully to the target lesion (“lesional
activity”).”” " Without “lesional dosimetry” to quantify the
amount of RAI accumulating in a given disease site (thus
allowing some prediction of the efficacy of RAI treatment), the
amount of I-131 administered for metastatic disease must be
determined empirically or using whole-body dosimetry. The
latter yields an MTA, defined as the highest activity that can be
administered without toxicity to bone marrow and lungs*’
(MTA is the activity of I-131 that results in a dose of 200 rads to
blood and in a retained activity of <80 mCi in the lungs at 48
hours—the latter is usually relevant only in patients with
diffuse lung metastases). However, there may be considerable
heterogeneity of RAI uptake among lesions. This can be
addressed by lesional dosimetry only with 1-124 PET/CT,
which permits quantification of iodine uptake in each disease
site and thus individualized, patient-specific treatment plan-
ning."* Maxon et al’' determined that a dose of at least
8000 rads is needed to achieve complete destruction of thyroid
cancer metastases and at least 30,000 rads for the thyroid
remnant. Except for lesional dosimetry, no other techniques
exist to predict which patient with metastatic thyroid cancer
would respond to RAI therapy. Therefore, in practice, many
patients would be treated repeatedly with RAI, using “empiri-
cal” activities; however, this may well be ineffective and could
cause potential morbidity. """

External-beam radiotherapy (EBRT) is rarely employed in
the management of differentiated thyroid cancer. However, it is

a meaningful adjuvant modality in patients >45 years of age
with gross unresectable tumor or significant extrathyroidal
extension in whom further surgery or RAI would not be
effective.’ In an earlier study from our institution, EBRT
provided effective locoregional control in a select group of
locally advanced or recurrent nonanaplastic thyroid cancers,
with 2- and 4-year overall locoregional control rate of 86% and
72%, respectively.”” In a more recent study with 66 patients,
these data were confirmed: EBRT alone or in conjunction with
chemotherapy proved safe and effective, providing locore-
gional control in 90% of patients undergoing concurrent
chemoradiotherapy and >85% locoregional control in

patients with no metastases. "

PET/CT Imaging With lodine-124
and F-18 FDG

[-124 is a positron emitter with a half-life of 4.2 days;
approximately 22% of the disintegrations produce positrons
of relatively high energies as well as high-energy gamma and
x-rays. """ Most published studies using I-124 PET or PET/CT
include only small numbers of patients due to logistical
challenges and expense of 1-124. Therefore, conclusions
remain somewhat preliminary. Nevertheless, it has been
shown convincingly that 1-124 PET/CT is more sensitive in
detecting metastatic disease than gamma camera imaging with
1-131°"% (Fig. 1). For instance, in a study of 25 patients, I-124
PET identified 50% more sites of disease than the pretreatment
(“diagnostic”) scan with 1-131 dosimetry scans in 32% of
patients.” 1-124 PET/CT also enables lesional dosimetry. In a
retrospective study of 34 patients, 1-124 PET allowed for
reliable volume estimation (>0.80 ml) in 59 lesions of 17
patients.”” In another study, I-124 PET lesional dosimetry was
used to calculate the amount of RAI needed to achieve doses of
> 100 Gy to all metastases without exceeding dose of 2 Gy to
the blood; I-124 PET led to a change in management in 25% of
patients.”® In another study, 15 of 30 patients with known
metastatic disease showed no 1-124 uptake on serial scans (4,
24, 48, and 72 hours), despite sufficiently high TSH levels,
suggesting that these lesions would also be refractory to I-131
treatment.’” A smaller study in 12 patients disagreed with this
conclusion and suggested that I-124 PET should not be used in
isolation to prevent treatment with I-131.” However, it should
be realized that uptake of I-131 alone on posttreatment scans is
not sufficient for response, unless the local dose from
accumulated iodine is tumoricidal. The probability of achiev-
ing tumoricidal doses is best predicted by 1-124 PET.

An inverse relationship between FDG avidity and radio-
iodine uptake (originally described by Feine as the flip-flop
phenomenon,™ Fig. 2) is often seen in metastatic thyroid
cancer lesions; increased FDG uptake is generally associated
with decreased disease-specific survival.”’ In general, FDG
avidity increases and iodine avidity decreases as tumors or
metastases dedifferentiate, which is associated with increasing
disease aggressiveness, refractoriness to RAI therapy, and
poorer prognosis.”" A histopathologic study also showed that
most metastases in patients with radioiodine-refractory, FDG-
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Figure 1 1-124 PET MIP scan showing uptake in multiple bone metastases. 1-131 Post-therapy scan performed
approximately 4 years earlier showed uptake in a few bone metastases.

positive metastases were of histologically aggressive sub-
types.”” However, the “FDG-iodine flip-flop” is not an all-or-
none phenomenon. On one extreme side of this spectrum are
anaplastic carcinomas, which are reliably avid to FDG and in
which the intensity of FDG uptake is correlated with survival.**
On the other end of the spectrum are metastases from well-
differentiated papillary carcinomas that show intense iodine
uptake, but no FDG uptake. In patients with truly advanced
disease, there is usually a spectrum of metastatic lesions—
some avid more or only to iodine, and some avid more or only
to FDG. The presence, intensity, and extent of FDG-avid
disease provides prognostic information, helps guide therapy
(even high activities of RAI have little or no therapeutic effect
on FDG-avid metastases”™), and may aid in treatment mon-
itoring (a decline in FDG uptake may indicate a response to
novel targeted drugs in patients with advanced thyroid cancer).
The prognostic value of FDG-PET in advanced thyroid cancer
was well documented in a classic study with 125 patients in
whom survival was lower among patients with FDG-positive
disease as compared with patients without FDG-avid lesions:
patients with a volume of FDG-avid disease > 125 ml had a
significantly shorter survival.”” FDG-PET may also help in the
management of patients with differentiated thyroid cancer
presenting with elevated Tg levels but a negative I-131 scan; in
this setting, FDG-PET may be most useful when Tg levels are
greater than 10 meg/ml.*”®” Beyond the volume of FDG-avid
disease, the intensity of FDG uptake in metastatic lesions,
measured as standardized uptake value, further refines the
prognostic information of this test. In a retrospective study of

400 patients with thyroid cancer, FDG standardized uptake
value and number of FDG-avid lesions were correlated with
poor survival. Among all patients, those with local neck disease
had the best survival, those with regional metastases (eg, in
supraclavicular or mediastinal nodes) fared slightly worse, and
patients with distant metastases had the lowest overall sur-
vival®’ (Fig. 3). For all of these aforementioned reasons,
postoperative FDG-PET is recommended to be performed
routinely in patients with thyroid cancer and aggressive
histologies to establish a reference stage for future follow-up.
In this retrospective study of 20 patients with a total of 86
lesions, FDG-PET was more sensitive than postablation radio-
iodine scan for detection of lesions (69% vs 59%).”"

Discoveries in Thyroid Cancer
Biology Provide a Rationale for
Novel Targeted Therapies

Oncogenic Signaling Diminishes lodide
Avidity in RAl-Refractory Thyroid Cancer

Recent advances in targeted molecular therapies have helped
us in better understanding those patients who may benefit
from 1-131 therapy and identify other patients who may
benefit from new therapeutic approaches.”' Patients with RAI-
refractory (RAIR) metastatic tumors that either lack or lose the
ability to trap iodide possess a worse prognosis: the 10-year
survival of patients with metastatic lesions retaining RAI avidity
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Figure 2 (A) Flip-flop phenomenon showing multiple FDG-avid lung metastases, which are not iodine avid on I-124 PET
scan. (B) Flip-flop phenomenon showing multiple FDG-avid lung metastases, which are not iodine avid. Top row
transaxial images are FDG-PET and bottom row transaxial images are 1-124 PET.

is approximately 60%, but only 10% for patients with RAIR
disease.'® Over the past decade, multitargeted tyrosine kinase
inhibitors, which are thought to block tumor angiogenesis by
inhibiting multiple receptor tyrosine kinases (eg, vascular
endothelial growth factor receptor and platelet-derived growth
factor receptor), have emerged as new treatment modalities for
metastatic thyroid cancer. Based on these data, the Food and
Drug Administration approved the tyrosine kinase inhibitors
sorafenib and lenvatinib for the treatment of RAIR thyroid
cancer’”"” (Fig. 4). The challenge of these therapies is the need
to maintain continuous drug dosing and manage the

accompanying drug toxicities to realize clinical benefit. In a
multicenter, randomized, double-blind, placebo-controlled
phase 3 trial with sorafenib in progressive RAIR differentiated
thyroid cancer, sorafenib improved progression-free survival
compared with placebo (10.8 months with sorafenib vs
5.8 months with placebo).”” In another multicenter phase
3 randomized, double-blind study of patients with progressive
thyroid cancer comparing lenvatinib vs placebo, the median
progression-free survival was 18.3 months in the lenvatinib
group vs 3.6 months in the placebo group. There were four
complete responses (64.8%) in the lenvatinib group and 1.5%
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Figure 3 (A) FDG-PET MIP scan shows uptake in left tracheoesophageal groove mass, lung, thoracic nodal, and osseous
metastases. (B) FDG-PET shows uptake in lung, thoracic nodal, and osseous metastases. MIP, maximum intensity

projection.

in the placebo group.”” Of note, in the phase 3 trials, the rate of
dose interruption, reduction, and discontinuation was signifi-
cant for both sorafenib and lenvatinib, which may undermine
the benefits of these therapies.”””” For these patients, devel-
oping a novel strategy of restoring the efficacy of I-131 would
provide a therapeutic alternative for managing metastatic
disease with a discrete period of treatment, and potentially
delay the need to initiate continuous drug therapy.

Current experimental strategies aim to target oncogenic
signaling pathways that diminish iodide avidity in thyroid
cancer. For instance, activation of the mitogen-activated
protein kinase (MAPK) signaling pathway (RET-RAS-RAF-

MEK-ERK) is a central oncogenic event for the development
of most thyroid malignancies. The pathway is aberrantly
activated primarily through mutually exclusive genetic alter-
ations in the growth factor receptor RET, the three isoforms of
RAS (N, H, and K), and BRAF, one of which is present in
~70% of papillary thyroid carcinomas (PTCs).'""*"° The
BRAF Y*°F mutation is the most common genetic alteration in
PTC 1077

Beyond promoting cellular proliferation and survival, onco-
genic activation of MAPK signaling suppresses the expression
of follicular cell-specific genes that are responsible for iodide
uptake (eg, NIS) and metabolism.”*® Additionally, each
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SIGNALING PATHWAYS IN THYROID CANCER
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Figure 4 Signaling pathways in thyroid cancer.

MAPK pathway alteration is also associated with different
degrees of MAPK signaling output: BRAF-driven cancers
possess higher MAPK output relative to RAS-driven cancers.”’
The differential effect on MAPK signaling output also translates
to differences in suppression of thyroid differentiation. The
Cancer Genome Atlas genomic analysis of almost 500 PTCs
demonstrated that higher MAPK output tumors (eg, “BRAF
mutant cancer—Ilike”) exhibit greater suppression of thyroid
differentiation than other tumors (eg, “RAS mutant cancer—
like”).”” This biology provides the mechanistic basis of the
well-established clinical observation that BRAF mutant tumors
have a more aggressive clinical behavior and are more often
refractory to RAL™™ In aggregate, these observations suggest
that oncogenic MAPK pathway activation in thyroid malig-
nancies diminishes iodide avidity by suppressing components
of thyrocyte-specific gene expression; the extent to which this
is achieved is determined by the specific MAPK pathway
alteration.

MAPK Pathway Inhibition to Enhance RAI
Avidity and Efficacy

Experiments in cell line and animal models provided proof-of-
principle data that pharmacologic manipulation of the MAPK
pathway with small molecule inhibitors may be a novel

approach for enhancing iodide avidity. In a mouse model of
poorly differentiated thyroid cancer driven by inducible
thyroid-specific expression of BRAF'™F treatment with
downstream MAPK pathway inhibitors targeting either BRAF
or MEK partially restored expression of NIS and iodine
avidity.”® These preclinical data led to a pilot clinical trial
evaluating the effect of the MEK inhibitor Selumetinib
on iodide uptake in patients with RAl-refractory thyroid
cancers.”’ In this study, recombinant human TSH (th-TSH)
1-124 PET/CT lesional dosimetry was used to quantify drug-
induced changes in iodide incorporation within specific
lesions. Of the 20 evaluable patients, 12 (60%) had new or
increased 1-124 incorporation with Selumetinib. For eight
(40%) patients, the I-124 uptake predicted that >2000 cGy of
1-131 could be delivered; these patients were treated with
Selumetinib in combination with therapeutic 1-131. These
changes in iodide incorporation translated to clinical benefit, as
all eight patients treated with I-131 experienced reductions in
tumor size. In total, there were five confirmed partial responses
and three patients had stable disease. Substantial decreases in
serum Tg level were also achieved in all patients. This approach
appeared to be particularly effective for patients harboring the
NRAS mutation, as all five enrolled on the study qualified for
treatment with I-131. By contrast, only one patient with BRAF
mutation received I-131 treatment. This pilot study provided a
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critical proof-of-concept that MAPK pathway inhibition can
enhance RAI incorporation and efficacy in a subset of RAIR
patients. Much remains to be investigated in clinical trials
before this approach can be introduced into regular clinical
practice. The differences in efficacy observed within different
genetic subsets of disease and the heterogeneity in the degrees
of enhancement in iodide avidity achieved in the pilot study
suggest that there is still opportunity to optimize pathway
inhibition and restoration of thyrocyte-specific gene expression
with alternative MAPK pathway inhibitors alone or in drug
combinations. For patients with BRAF mutation, treatment
with a BRAF inhibitor may be a more promising approach: a
recent pilot trial showed that dabrafenib increased iodide
incorporation in six of ten patients with BRAF mutation,
resulting in tumor shrinkage after subsequent treatment with
1-131 in five of the six patients (two partial responses and four
patients with stable disease).”

Other Targeted Drugs

Romidepsin (a histone deacetylase inhibitor) has been studied
in a group of 20 patients with RAIR thyroid cancer. Restoration
of radioiodine avidity was documented in two patients. No
major response evaluation criteria in solid tumors (RECIST)
responses were documented; stable disease was seen in 13 and
progressive disease in seven patients. This study had poor
accrual after a grade five adverse event.®” Another drug,
axitinib (a selective inhibitor of vascular endothelial growth
factor receptors 1, 2, and 3), was studied in 60 patients with
advanced thyroid cancers in a multi-institutional phase 2 trial;
partial responses were seen in 18 patients (30% objective
response rate), and 38% patients showed stable disease at > 16
weeks.”

In summary, although some of the data discussed in this
section appear promising, optimizing and defining the efficacy
and safety of various novel drugs would be accomplished only
through larger prospective clinical trials. Imaging, including
PET/CT with 1-124 and FDG, as well as SPECT/CT with 1-123
and I-131, would be a critical part of clinical trials and would
be essential to guide and monitor novel targeted therapies. We
expect that these therapies would ultimately translate into
improved outcomes for patients with advanced thyroid cancer
over the next decade.
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