90Y Radioembolization: Multimodal Imaging Pattern Approach with Angiographic Correlation for Optimized Target Therapy Delivery

Juan C. Camacho, MD
Valeria Moncayo, MD
Nina Kokaï, MD
Hamilton E. Reavey, MD
James R. Galt, PhD
Kei Yamada, MD
Darren D. Kies, MD
Roger S. Williams, DO
Hyun S. Kim, MD
David M. Schuster, MD

Primary and metastatic liver cancers are responsible for considerable morbidity and mortality, and many patients are not curable at presentation. Therefore, new therapies such as radioembolization with yttrium 90 (90Y)–labeled microspheres are an alternative method to treat patients with unresectable primary or secondary liver tumors. Patient selection, treatment technique, and early recognition of potential complications are the keys for successful patient outcomes. The activity of administered 90Y microspheres depends on multiple variables, including the tumor burden, the volume of the liver lobe to be treated, the type of 90Y microspheres, and the hepatopulmonary shunt fraction. Preprocedural planning relies on the results of cross-sectional imaging to determine the extent of disease, tumor and nontumoral liver volumes, patency of the portal vein, and the degree of extrahepatic disease. A multidisciplinary approach that combines expertise in cross-sectional imaging, nuclear medicine, and flow dynamics is critical to adequately target malignant tissue. Preprocedural multimodality imaging, particularly combined single photon emission computed tomography (SPECT) and computed tomography (CT) imaging (SPECT/CT), may be used to identify nontarget imaging patterns that, if recognized, can potentially be corrected with either branch vessel embolization or catheter repositioning. Postprocedural multimodality imaging is also useful to confirm the appropriate delivery of 90Y microspheres, enabling early identification of potential complications and the adequacy of microsphere distribution, thereby optimizing planning for subsequent therapies.

Introduction

Yttrium 90 (90Y) radioembolization therapy is a complex procedure that relies on the principle of intra-arterial brachytherapy and requires a multidisciplinary approach to ensure patient safety as a foundation to achieve favorable oncologic outcomes. In the appropriate clinical scenario, 90Y radioembolization is a safe and effective therapy for patients presenting with primary and metastatic liver cancer (1–5). Several prospective randomized controlled trials are under way to assess, in comparison with other therapies, the clinical efficacies and benefits of administering intra-arterial brachytherapy in combination with other therapies and as the first-line therapy for primary and metastatic liver tumors.

Abbreviations: FDG = fluorine 18 fluorodeoxyglucose, MAA = macroaggregates of human serum albumin

Published online 10.1148/rg.2015140314

Content Codes: GI, IR, NM, DI, VA

1From the Division of Interventional Radiology and Image-guided Medicine (J.C.C., N.K., K.Y., D.D.K., R.S.W.) and Division of Nuclear Medicine and Molecular Imaging (V.M., J.R.G., D.M.S.), Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1364 Clifton Rd NE, Atlanta, GA 30322; Department of Radiology, Kaiser Permanente, Atlanta, Ga (H.E.R.); and Division of Interventional Radiology, Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pa (H.S.K.). Presented as an education exhibit at the 2013 RSNA Annual Meeting. Received October 13, 2014; revision requested November 10 and received December 6; accepted December 11. For this journal-based SA-CME activity, the authors, editor, and reviewers have disclosed no relevant relationships. Address correspondence to J.C.C. (e-mail: juan.camacho@emory.edu).

See discussion on this article by Kalva and Sutphin (pp 1618–1620).

RSNA, 2015 • radiographics.rsna.org

See www.rsna.org/education/search/RG.
Preprocedural planning relies on cross-sectional imaging to determine the location and extent of disease. Ideally, three-phase computed tomographic (CT) or magnetic resonance (MR) imaging should be used to assess the tumor and non-tumoral liver volumes, the patency of the portal vein, and the degree of extrahepatic disease. Molecular imaging with positron emission tomography (PET) and CT (PET/CT) is useful to determine the metabolic tumoral volume in fluorine 18 fluorodeoxyglucose (FDG)-avid tumors and to establish baseline and follow-up response to therapy.

Interventional radiologists can optimize their therapeutic approach by using a multidisciplinary effort combining expertise in cross-sectional imaging, nuclear medicine, and flow dynamics to adequately target the patient’s tumor burden. Complications may be avoided while optimizing tumor-directed therapy if proper imaging pattern recognition is pursued.

The purpose of this article is to describe the use of imaging in 90Y radioembolization therapy for liver cancer. First, the general principles of 90Y radioembolization therapy are described. Then the role of imaging for 90Y radioembolization therapy is discussed. Finally, multimodality imaging patterns are related to 90Y distribution.

General Principles of 90Y Radioembolization Therapy

What Is 90Y?

90Y is the decay product of strontium 90 or may be produced by neutron bombardment of yttrium 89 (6). 90Y is a pure beta-particle emitter, which decays to stable zirconium 90 (90Zr) and has a physical half-life of 64.1 hours (2.67 days) (7). The average energy of beta-particle emissions is approximately 0.94 MeV (8). As a beta-particle emitter, 90Y will induce cell death in surrounding tissue at the appropriate activity. One of the limitations of conventional radiation therapy in the treatment of liver tumors is the poor tolerance of the normal parenchyma to radiation. To destroy a solid tumor, a dose of at least 70 Gy is required to cause irreversible cellular damage, yet the hepatic parenchymal tolerance level is closer to 30–40 Gy. At a dose of 40 Gy, the chance of causing radiation-induced liver damage is approximately 50% (9,10). Because most hepatic malignancies are radiosensitive and have predominant arterial inflow rather than portal venous supply (11), 90Y microspheres concentrate within tumors, inducing radiation cell death with relative sparing of the uninvolved liver parenchyma (7,12).

Vehicles Delivering 90Y: Resin and Glass Microspheres

Two different 90Y products are available in the United States: glass microspheres (13) and resin microspheres (14). Glass microspheres (TheraSphere; BTG, London, England) are insoluble particles with a mean diameter of 20–30 μm (compared with 20–60 μm for the resin microspheres) (7). In the glass microsphere product, 90Y is incorporated into the glass matrix, whereas in the resin microspheres (SIR-Spheres; Sirtex Medical, North Sydney, Australia), the radioisotope is bound to the surface of the resin microsphere. Other important differences between the glass microsphere and the resin microsphere include the specific gravity (3.6 vs 1.6 g/dL, respectively), the activity per microsphere (150–2200 Bq vs 65–140 Bq, respectively), and the number of microspheres per vial (1.2–8 × 10⁶ vs 40–80 × 10⁶, respectively) (7,12,15).

Resin-based microspheres have a lower specific activity per particle and thus require more particles to achieve any given dose. Glass-based microspheres are routinely delivered as a complete dose with little embolic effect at a potentially greater dosage with larger parenchymal coverage (16). Glass microspheres are radiosensitive and have predominant arterial inflow rather than portal venous supply (11). 90Y microspheres concentrate within tumors, inducing radiation cell death with relative sparing of the uninvolved liver parenchyma (7,12).

Indications and Contra-indications for 90Y Therapy

The findings from numerous studies have demonstrated that a substantial benefit results from...
providing intra-arterial therapies for liver tumors (1,2,4,5,7,13,19,20). Radioembolization and the integration of combination therapies have improved response rates and the survival of patients with liver neoplasms (21–24).

Indications for \(^{90}\)Y radioembolization include management of primary liver malignancies (including hepatocellular carcinoma and cholangiocarcinoma), as well as metastatic disease to the liver parenchyma (8,13,14). The Food and Drug Administration–approved indication for the resin microspheres is treatment of unresectable hepatic metastases from colorectal cancer with adjuvant intrahepatic arterial chemotherapy of flouxuridine. Glass microspheres are approved with a humanitarian device exemption (HDE) as neoadjuvant therapy to surgery or transplantation in patients with unresectable hepatocellular carcinoma. However, the therapies are often administered for off-label use or with an extension of indications in the HDE. Objectives of \(^{90}\)Y therapy include “downstaging” neoplastic liver disease, prolonging recurrence-free and overall survival, and bridging patients to transplantation or resection (1,3–5,13,19,25).

According to the consensus panel report from the Radioembolization Brachytherapy Oncology Consortium, patients considered for radioembolization therapy include those with (a) unresectable hepatic primary or metastatic cancer, (b) liver-dominant tumor burden, and (c) life expectancy of at least 3 months as part of multidisciplinary palliative care (26).

Contraindications for microsphere radioembolization therapy include (a) deposition of technetium 99m \(^{99m}\)Tc–labeled macroaggregates of human serum albumin (MAA) in the gastrointestinal tract that is not correctable with angiographic techniques; (b) shunting to the lungs that could result in delivery of more than 30 Gy to the pulmonary parenchyma in a single treatment and more than 50 Gy as a cumulative dose; (c) contraindications to hepatic artery catheterization, including technical difficulties or bleeding diathesis; (d) severe liver dysfunction or pulmonary insufficiency; or (e) main portal vein thrombosis (although treatment can be considered on a case-by-case basis) (18). Caution is also advised in patients who exhibit (a) a bilirubin level of 1.5 mg/dL or more (unless superselective embolization can be performed) and (b) an extensive tumor burden with limited hepatic reserve and specific abnormal results of liver function tests (18). Patients who have undergone prior radiation therapy involving the liver should also be carefully reviewed on a case-by-case basis to ensure that adequate hepatic function is maintained after therapy. Additional warning is advised for patients with an Eastern Cooperative Oncology Group (ECOG) performance score greater than 1.

Role of Imaging for \(^{90}\)Y Microsphere Therapy

Preprocedural Cross-sectional Imaging and Patient Evaluation

The amount of \(^{90}\)Y activity administered to a patient depends on multiple variables, including the tumor burden, the absolute or relative volume of liver to be treated, the type of \(^{90}\)Y microsphere (ie, glass or resin), and the hepatopulmonary shunt fraction. Preprocedural planning relies on cross-sectional imaging to determine the location and extent of disease.

Ideally, three-phase computed tomographic (CT) or magnetic resonance (MR) imaging should be used to assess the tumoral and non-tumoral liver volumes, the patency of the portal vein, and the degree of extrahepatic disease. Molecular imaging with positron emission tomography (PET) and CT (PET/CT) is useful to determine the metabolic tumoral volume in fluorine 18 fluorodeoxyglucose (FDG)–avid tumors and to establish baseline and follow-up response to therapy (27–29).

Furthermore, the hepatic and biochemical status of each patient should be evaluated to ensure that the patient demonstrates adequate liver function to undergo microsphere therapy. Satisfactory renal function to allow angiographic examination, as well as overall good functional status before \(^{90}\)Y radioembolization, is crucial for favorable patient outcomes (26,30,31).

Combined Preprocedural Angiographic Vascular Mapping and \(^{99m}\)Tc-MAA Shunt Examination

Suitable patients should undergo a \(^{99m}\)Tc-MAA shunt examination, which offers important preprocedural information (32). Variant hepatic arterial anatomy occurs commonly and has been reported in 25%–45% of the individuals in large surgical series (33,34). Conventional hepatic arteries are supplied through the celiac trunk and arise from the proper hepatic artery, which in turn arises from the common hepatic artery, distal to the gastroduodenal origin (Fig 1). Given the propensity for arterial variants and the development of hepatopulmonary shunting in hepatic tumors, careful consideration of the dose delivery point is crucial for optimal coverage of target lesions.

Selective angiography of the superior mesenteric artery should be performed to exclude replaced or accessory hepatic arteries arising from the superior mesenteric artery. Failure to identify
a replaced or accessory hepatic arterial supply could have important implications for proper estimation of the hepatopulmonary shunt fraction and for complete targeted delivery to the liver tumor (Fig 2).

To avoid extrahepatic nontarget embolization of surrounding organs, accurate superselective angiographic evaluation of the targeted vascular territory should be performed, which includes prophylactic embolization of nonhepatic branch vessels during the mapping examination (35). Some potential nonhepatic branch vessels arise directly from the right or left hepatic arteries and must be embolized to safely administer 90Y microspheres. For example, the right gastric artery often arises as the first branch of the left hepatic artery. Additionally, accessory left gastric or inferior phrenic arteries can also arise from the left hepatic artery and may be difficult to identify. Other nonhepatic branch vessels, particularly the gastroduodenal artery, arise proximal to the usual intended point of 90Y microsphere infusion. If there is concern for arterial reflux and nontarget embolization due to anatomic variants or extra-hepatic vessels arising within the treatment territory, prophylactic embolization can be performed (36–38). When performing imaging of the left hepatic artery, two considerations should be taken into account: (a) It is important to try to determine the origin of the umbilical artery, which can potentially be a source of nontarget embolization. (b) When imaging segment IV arteries, it is important to determine if there are appreciable cross-filling arteries. Both of these factors can lead to unintended nontarget embolization.

After microcatheter placement at the origin of the target hepatic territory, a dose of 148 MBq (4 mCi) of 99mTc-MAA is usually administered (39). Whole-liver or more selective administration of 99mTc-MAA may be performed, depending on the anatomic distribution of the tumor as well as institutional preference. Although ideally a selective MAA examination may be useful before each session of planned 90Y therapy in the same vascular distribution, a single 99mTc-MAA whole-liver examination is commonly performed to spare the patient the cost and potential morbidity of an additional procedure. This examination may be
accomplished either with a single proper hepatic artery administration or with divided lobar doses. The characteristics of MAA, specifically a particle size range of 10–90 µm, allow its use as a surrogate for 90Y microsphere deposition into the hepatic arterial territory (40). If shunting or nontarget activity is identified, coil embolization or catheter repositioning at the time of therapy can be performed, or the therapy may be deferred. If this strategy is followed, potential complications, including gastrointestinal ulcers, pancreatitis, radiation-induced cholecystitis, and radiation pneumonitis, may be avoided (7,41–44).

99mTc-MAA planar imaging of the thorax and abdomen and an optional hybrid examination with single photon emission computed tomography (SPECT) and CT (SPECT/CT) are then performed within 1 hour after intraarterial 99mTc-MAA administration to determine the hepatopulmonary shunt fraction (26). It is preferable to image as close as possible to the injection time to avoid false-positive extrahepatic activity caused by free technetium (26). Images are obtained by using a gamma camera with a large field of view, with a low-energy high-resolution parallel hole collimator and a 15% or 20% window centered at 140 keV. In addition, a cobalt 57 transmission source may be useful with planar imaging to outline the body as an aid in positioning. Although SPECT/CT is an optional component of this examination, various investigators have suggested that 99mTc-MAA SPECT/CT could disclose potential nontarget areas of embolization not identified at angiography (45–48). If SPECT/CT is not available, SPECT may be useful instead. It has been our experience that SPECT/CT adds valuable preprocedural information to adequately target the tumor.

Patients with a hepatic shunt fraction of greater than 20% are generally not ideal candidates for 90Y radioembolization because of an increased risk of developing radiation pneumonitis, although the therapy may still be administered in individual cases if the total activity delivered to the lungs will be less than the recommended thresholds of 30 Gy per treatment session and 50 Gy for the cumulative dose (Fig 3). However, the decreased dose required to spare the lungs with shunts of more than 20% often makes the therapy suboptimal or ineffective.

Additional angiographic techniques such as cone-beam CT have been recently incorporated into routine clinical practice at some centers to minimize procedural risks and to avoid nontarget embolization. Incorporation of cone-beam CT during the 99mTc-MAA shunt examination session allows detection and exclusion of extrahepatic enhancement more precisely than conventional angiography, increasing the specificity and negative predictive values of the 99mTc-MAA shunt examination and potentially decreasing the risk of therapy-induced complications (49,50). Cone-beam CT also provides detailed information about tumor vascularity and tumor vascular supply and, in more than one-half of the patients, allows identification of extrahepatic tumoral vascular supply when compared with conventional angiography alone (51,52).

The availability of an advanced multimodality workstation will enable fusion of the 99mTc-MAA SPECT images to images obtained with other modalities, such as PET/CT or MR imaging, although accurate registration may be difficult because the 99mTc-MAA is confined to the liver and provides few anatomic landmarks. If the examination is performed on a SPECT/CT platform, the acquired CT examination may be used as a “vehicle” to first perform anatomic fusion and thus coregister the functional 99mTc-MAA images to MR images or to molecular images such as PET/CT images.

90Y Microsphere Dose Calculation

The administered activity for each patient is calculated on the basis of the type of microsphere used. On the basis of the manufacturer’s recommendations and published guidelines, the glass microsphere activity required (AR) (in gigabecquerels) is calculated by using the following formula, which incorporates the target desired dose (DD) (in gray), the mass of liver to be treated (massliver) (in kilograms), the lung shunt fraction (LSF), and the anticipated residual waste (R) (13):

\[AR = (DD \times \text{massliver})/(50 \times (1 – \text{LSF}) \times (1 – R)) \]

Target dose is typically 120 Gy (range, 80–150 Gy). The mass of the liver lobe to be treated is estimated by calculating the lobe volume with the use of three-dimensional rendering medical imaging software, assuming 1.03 g/cm³ of liver tissue. With bilobar hepatic involvement, 99mTc microsphere therapy is commonly administered in lobar doses, rather than to the entire liver, to ensure adequate hepatic reserve.

Take the example of a patient who has received no prior 90Y microsphere therapy, with an 1800-cm³ total liver volume, a 5% lung shunt fraction, and 1% anticipated residual waste, who will receive a 120-Gy desired dose to the 1000-cm³ (1.03-kg) right lobe. For this patient, the required activity (RA) (in gigabecquerels) is calculated as follows: \[RA = (120 \times 1.03)/(50 \times (1 – 0.05) \times (1 – 0.01)) \]. A dose of 2.63 GBq is thus required at administration.

The calculation of administered activity for resin-based microspheres may be performed with two different methods. The method recommended by the manufacturer uses body surface
Figure 3. Importance of performing a 99mTc-MAA shunt examination. A 59-year-old man presented with infiltrative hepatocellular carcinoma with macrovascular invasion and no extrahepatic disease. (a) Axial T2-weighted MR image of the liver shows a geographic area of high T2 signal intensity (white arrow) involving the posterior segment of the right liver lobe. This finding is associated with an expanded right portal vein (black arrow), which shows similar signal intensity characteristics when compared with the involved liver lobe; therefore, the findings correspond to an infiltrative hepatocellular carcinoma with lobar portal vein tumoral thrombosis. (b) Angiogram obtained before the 99mTc-MAA examination shows catheter placement in the superior mesenteric artery (because of a replaced right hepatic artery); and while in the arterial phase, there is opacification of the common hepatic artery (white arrow) with early opacification of the main portal vein, including the intrahepatic branches, because of high flow shunting during the administration of contrast material (black arrow). (c) 99mTc-MAA maximum intensity projection image shows tracer activity throughout the right and left hepatic lobes (white arrows) (despite a replaced right hepatic artery injection), as well as in both lungs (black arrows), because of extensive portal shunting. The lung shunt fraction in this particular case corresponded to 55%, and the 90Y radioembolization therapy was subsequently cancelled.

area (BSA) as a proxy for the liver volume of the patient to calculate the prescribed activity (in gigabecquerels) in the following way (53):

$$\text{activity} = (\text{BSA} - 0.2) + \left(\frac{\% \text{ tumor involvement of liver}}{100}\right).$$

For lobar therapy, the activity is then multiplied by the lobar mass as a fraction of the entire liver. Various reduction factors are also applied, including activity reduction for abnormal results of liver function tests, small tumor load, and prior radiation therapy.

Thus, for the same hypothetical patient described in the preceding paragraphs who is receiving right lobe therapy, the body surface area and the percent tumor involvement would be used for the calculation of prescribed activity (in gigabecquerels); for example, 2.03 and 20%, respectively:

$$\text{activity} = (2.03 - 0.2) + \left(\frac{20}{100}\right).$$

This calculation would result in 2.03 GBq required for the entire liver, which is then multiplied by the 55.6% right lobar mass to yield a 1.13-GBq dose required at therapy.

A second empirical method to calculate prescribed activity for resin-based microspheres uses the percentage of liver involvement by the tumor to determine the starting activity and is modified by a lung shunt modifier and a liver part modifier (26).

More sophisticated planning methods have also been advocated in an attempt to provide greater individualization and dosimetric activity calculations (54–58).
Therapy Administration: Consolidation of Multidisciplinary Effort

Multiple safety procedures are carried out on the day of therapy in an effort to control variables that may interfere with therapy delivery, including (a) verification of pregnancy status, if applicable, (b) confirmation of dose calculations and the liver lobe to be treated, and (c) preparation of the angiography suite to comply with additional radioisotope safety measurements. In our facility, a running checklist is completed, and nuclear medicine personnel visit the patient in the holding area to review radiation safety precautions. The interventional radiologist then administers the therapy with the assistance of the multidisciplinary team.

Postprocedural Bremsstrahlung Examination

The beta particles emitted by 90Y produce secondary bremsstrahlung radiation, which may be imaged to document 90Y microsphere deposition. Bremsstrahlung radiation is caused by the beta particle losing energy as it passes close to the atomic nucleus. A postprocedural 90Y bremsstrahlung planar or SPECT/CT scan is helpful after treatment to evaluate actual posttherapy microsphere distribution and to identify radiotracer activity outside the tumoral coverage areas. The use of SPECT/CT increases the sensitivity of detecting extrahepatic activity (7, 41–43, 59, 60). Imaging patterns that are based on our experience with pre- and posttherapy multimodality imaging are described in the following paragraphs.

Planar and SPECT bremsstrahlung imaging of the abdomen may be performed by using medium-energy high-resolution parallel hole collimation. Unlike the monoenergetic radiation produced by the radionuclides commonly used for nuclear imaging, bremsstrahlung radiation is a continuous spectrum with a maximum energy equal to that of the beta particle (0.94 MeV) and presents unique problems for imaging. Although consensus has not been reached on the optimum energy window for imaging, a 30% energy window centered at 75 keV or a 32% window centered at 108 keV is often used. It should be noted that if the gamma camera auto-peaks on acquisition, this feature should be turned off because the lack of a well-defined energy peak may produce unpredictable results. The bremsstrahlung images from separate therapies may be coregistered to each other or to images from other modalities to ensure adequate therapy coverage (Fig 4).

The $0^+ / 0^+$ transition of 90Zr, which results in a β^+ / β^- pair creation, provides the opportunity to detect 90Y distribution by using PET (22). Clinical applications of PET imaging with 90Y have been reported recently in the context of radioembolization, radioimmunotherapy for lymphoma, and peptide receptor radionuclide therapy (61–65). 90Y bremsstrahlung imaging with SPECT/CT demonstrates low spatial resolution; therefore, imaging with PET/CT may be beneficial for small foci of activity. In addition, quantification of delivered activity to lesions may be more accurate with PET, compared with SPECT. Disadvantages associated with PET imaging are low counts and longer imaging time, as well as greater economic cost (66).

Multimodality Imaging Patterns: Classification to Improve Targeted Therapy

Interventional radiologists can optimize their therapeutic approach by using a multidisciplinary effort combining expertise in cross-sectional imaging, nuclear medicine, and flow dynamics to adequately target the patient’s tumor burden. Complications may be avoided while optimizing tumor-directed therapy if proper imaging pattern recognition is pursued.

Multimodality Imaging Approach

Multimodality SPECT/CT or PET/CT allows the categorization of patients into those with target and nontarget 90Y distributions. Both pretherapy 99mTc-MAA and posttherapy bremsstrahlung imaging (or PET/CT) can be used in an iterative manner. Pretherapy multimodality imaging will inform the approach to therapy, which can then be evaluated with posttherapy imaging, which in turn may be used to direct subsequent treatment.

Multimodality imaging may demonstrate target and nontarget 90Y microsphere distribution, as well as complete or incomplete tumoral coverage (Fig 5). If the distribution of the 90Y microspheres is to the appropriate target, complete or incomplete lesion coverage by the radioisotope can be identified. When a nontarget distribution is observed as an imaging pattern, the distribution may be extrahepatic (ie, stomach, duodenum, gallbladder, or other visceral structure) or intrahepatic (ie, intrahepatic reflux, intrahepatic shunting at the capillary level, or nontarget vessel flow redistribution).

As demonstrated in the following sections, incomplete lesion coverage and/or nontarget distribution, if recognized at pretherapy imaging, may be avoided by (a) modification of therapy delivery by using catheter repositioning techniques or pretherapy branch vessel embolization or (b) withholding targeted therapy. However, sometimes nontarget 90Y microsphere distribution or incomplete target coverage is unexpected.
Figure 4. Expected 90Y microsphere distribution after therapy in a 69-year-old man with metastatic neuroendocrine tumor to the liver. (a) Angiogram shows that the right hepatic lobe was treated initially by placing the microcatheter in the origin of the right hepatic artery (arrow). (b) Posttherapy axial 90Y bremsstrahlung SPECT/CT image shows adequate distribution in the right lobe. (c) Angiogram shows that the left lobe was subsequently treated 2 months later, because the patient had responded well to the initial treatment. Note the superselective position of the microcatheter within the left hepatic artery (arrow). (d) Posttherapy axial 90Y bremsstrahlung SPECT/CT image shows adequate distribution in the left lobe. (e) Combined fusion of individual 90Y bremsstrahlung images from both treatments shows complete coverage of the entire liver except for the uninvolved caudate lobe. No extrahepatic activity is depicted.

Figure 5. Diagram summarizing the different multimodality imaging uptake patterns. The goal is target 90Y microsphere distribution with complete tumoral coverage.
Figure 6. Target distribution with intratumoral pattern. Images of a 69-year-old man with hepatocellular carcinoma show 90Y microsphere target distribution, with complete tumoral distribution at pretherapy evaluation, as well as at posttherapy imaging. (a) Axial contrast-enhanced T1-weighted MR image (arterial phase) shows an arterially enhancing lesion (arrow) within segment V of the liver parenchyma, a finding that corresponds to a hepatocellular carcinoma. (b) Selective angiogram of the anterior branch of the right hepatic artery shows adequate catheter position (arrow) for 99mTc-MAA delivery. (c) Coregistered 99mTc-MAA SPECT/CT and MR image shows complete tumoral distribution of the 99mTc-MAA (arrow). (d) Coregistered posttherapy 90Y bremsstrahlung and pretherapy MR image also shows complete tumoral distribution of the therapy (arrow).

or unavoidable but can be identified at posttherapy multimodality imaging, allowing immediate intervention or mitigation by altering the subsequent approach.

Target 90Y Distribution: Complete and Incomplete Imaging Patterns

Complete tumoral coverage refers to the administration of the microspheres into the tumoral territory (Fig 6). Given the arterial dominant supply of most tumors, complete tumoral distribution is expected. However, incomplete distribution may occur because of flow dynamics or, possibly, operator error. When incomplete distribution is identified, the operator may be able to correct the catheter position for a more targeted complete therapy delivery (Fig 7). Additionally, coil embolization of nonhepatic vessels (ie, phrenic artery) increases the flow to the liver by increasing the resistance of blood flow in nontarget territories and, therefore, increases the likelihood of target therapy delivery. Ideally, pre- and posttherapy multimodality imaging may be used in an iterative fashion to deliver optimized care (Fig 8). However, substantial incomplete tumoral coverage may reflect poor arterial supply of the target lesion and may also be an indication of extrahepatic vessel parasitization. Although this incomplete distribution may be partially mitigated, complete tumoral coverage may not be possible. This imaging pattern may explain why this type of lesion can demonstrate a suboptimal response to microsphere therapy.

Nontarget 90Y Distribution: Intrahepatic and Extrahepatic Imaging Patterns

Nontarget embolization may be intrahepatic or extrahepatic. If nontarget embolization is seen at pretherapy imaging, catheter redirection may then result in optimal therapy. Both target incomplete and nontarget intrahepatic patterns may coexist in the same imaging session (Fig 7d). The
Incomplete tumoral and nontarget intrahepatic distribution, which was corrected to target complete tumoral distribution. Images of a 52-year-old man with multifocal hepatocellular carcinoma show intrahepatic nontarget particle redistribution at initial 99mTc-MAA SPECT/CT, a finding that was corrected at subsequent therapy with angiographic adjustment. (a) Coronal contrast-enhanced T1-weighted MR image (arterial phase) shows multiple foci of arterial enhancement (arrow) within segment VII/VIII of the liver parenchyma, a finding that corresponds to multifocal hepatocellular carcinoma. (b) Selective angiogram of the right hepatic artery just beyond the vessel bifurcation (white arrow) shows adequate catheter position for 99mTc-MAA delivery. Note prior coil embolization of the right gastric and the gastroduodenal arteries (black arrows). (c) Coregistered coronal 99mTc-MAA SPECT/CT shunt and preprocedural MR image shows minimal radiotracer activity within the right lobe and minimal intratumoral distribution within the target lesions (arrow). (d) Coregistered axial 99mTc-MAA SPECT/CT and pretherapy MR image shows 99mTc-MAA distribution predominantly within segment IV of the liver parenchyma (arrow). (e) Subsequent selective angiogram obtained at the time of therapy allowed identification of the proximal segment IV branch stealing the majority of flow; therefore, the microcatheter was repositioned during therapy delivery and advanced into the superior division of the right hepatic artery (arrow). (f) Coregistered coronal 90Y bremsstrahlung and pretherapy MR image shows the now complete tumoral distribution of the 90Y microspheres (arrow).
Figure 8. Initially incomplete target distribution, followed by complete distribution pattern. Images of a 48-year-old man with metastatic colorectal carcinoma show incomplete tumoral distribution at initial 90Y microsphere therapy, a finding that was corrected with angiographic adjustment at subsequent therapy. (a) Coregistered axial FDG PET and CT image shows an FDG-avid lesion (arrow) within segment VI of the liver parenchyma adjacent to a prior resection margin, a finding that corresponds to metastatic disease. (b) Selective angiogram of the posterior and inferior branch of the right hepatic artery (arrow) shows adequate catheter position for 90Y microsphere delivery. (c) Coregistered axial 90Y bremsstrahlung and SPECT/CT image shows incomplete tumoral distribution of the 90Y microspheres (arrow), which were deposited in the posterior margin of the parenchyma, partially treating the metabolically active tumor. (d) Subsequent selective angiogram shows identification of an additional branch of the superior division within the posterior right hepatic artery (arrow) that was supplying the target lesion, and therefore the catheter was repositioned for 90Y microsphere delivery. (e) Coregistered axial 90Y bremsstrahlung and SPECT/CT image shows the now complete tumoral distribution of the 90Y microspheres (arrow), which are targeting the metabolically active tumor burden. (f) Coregistered axial posttherapy 90Y bremsstrahlung and pretherapy FDG PET image shows complete tumoral 90Y microsphere distribution (arrow), as manifested by FDG activity (black) within the treatment field (orange).
Figure 9. Complete target intratumoral distribution and also nontarget intrahepatic distribution. Images of a 69-year-old woman undergoing \(^{90}\)Y microsphere therapy for a metastatic neuroendocrine tumor show nontarget intrahepatic particle redistribution. (a) Axial nonenhanced CT image shows bilateral multifocal hypoattenuating liver lesions (arrows), findings that correspond with known neuroendocrine tumor metastases. (b) Angiogram obtained before \(^{90}\)Y microsphere therapy from the common hepatic artery (arrow) shows conventional hepatic anatomy. (c) Angiogram obtained at the time of therapy shows that the catheter was selectively placed into the left hepatic artery (arrow) to treat the majority of the tumor burden, which was located in the left hepatic lobe. (d) Axial \(^{90}\)Y bremsstrahlung SPECT/CT image obtained after treatment shows that although complete tumoral distribution of the therapy (black arrow) was depicted, the right hepatic lobe also showed \(^{90}\)Y microsphere activity, which fortuitously was deposited into the dominant segment V lesion (white arrow), likely because of preferential increased arterial flow through intrahepatic shunting at a capillary level.

Goal is to treat the tumor burden with the least effect on the normal parenchyma. Unintended liver embolization is usually related to preferential increased arterial flow through intrahepatic shunting at a capillary level or microsphere reflux into nontarget vessels (Fig 9). When nontarget extrahepatic activity is identified, it is usually related to the presence of flow collateralization by either parasitizing or normal vessels and may be avoidable by repositioning the catheter (Fig 10). Nontarget embolization includes involvement of the stomach, bowel, mesentery, gallbladder, pancreas, and, potentially, the umbilical region (Fig 11). Extrahepatic nontarget flow to the umbilical region may be difficult to detect because of vessel size and may require an extended injection for proper identification. In addition, reviewing the \(^{99m}\)Tc-MAA examination with a range of windowing may allow detection of subtle activity in the umbilical artery region.

Although most vessels are identified at conventional angiography, sometimes the caliber of these structures is too small for adequate detection, and nontarget extrahepatic embolization may then occur despite optimal therapy administration technique and lack of visualization at pretherapy \(^{99m}\)Tc-MAA SPECT/CT imaging. However, in these instances, the extrahepatic deposition will be detected at posttherapy \(^{90}\)Y bremsstrahlung SPECT/CT or PET/CT, and appropriate action may be taken, including close observation or administration of prophylactic medication (Fig 12).

Conclusion

\(^{90}\)Y microsphere therapy is a complex procedure that relies on the principle of intraarterial brachytherapy and requires a multidisciplinary team approach combining expertise in cross-sectional imaging, nuclear medicine, and flow dynamics to adequately target patient tumor burden and to
Figure 11. Nontarget extrahepatic distribution. Images of a 58-year-old man with metastatic colon cancer show 90Y nontarget distribution, with initial 99mTc-MAA SPECT/CT demonstrating umbilical activity, which was not avoided at subsequent therapy delivery. (a) Angiogram of the celiac trunk (arrow) obtained before 99mTc-MAA SPECT/CT shows conventional anatomy, with no replaced or accessory hepatic artery. At this time, coil embolization of the gastroduodenal artery was performed (not shown), and 99mTc-MAA injection was performed from the proper hepatic artery (arrow). (b) Axial 99mTc-MAA SPECT/CT image shows intense extrahepatic uptake in the gallbladder wall (black arrow) and the distal stomach and proximal duodenum (white arrow). (c) Angiogram shows that with selective placement of the catheter into the right hepatic artery, distal to the origin of the cystic artery and the right gastric artery (black arrow), and with coil embolization of the gastroduodenal artery (white arrow), nontarget distribution was avoided. (d) Axial 90Y bremsstrahlung SPECT/CT image shows the expected uptake in the right hepatic lobe, with no gallbladder wall uptake (black arrow) and no gastroduodenal uptake (white arrow).

Figure 10. Nontarget extrahepatic distribution at pretherapy imaging avoided at therapy. Images of a 67-year-old woman with metastatic colon cancer show 90Y nontarget distribution, with initial 99mTc-MAA SPECT/CT demonstrating gallbladder and gastroduodenal activity, which was avoided at subsequent therapy delivery. (a) Common hepatic angiogram obtained before 99mTc-MAA SPECT/CT shows conventional anatomy, with no replaced or accessory hepatic artery. At this time, coil embolization of the gastroduodenal artery was performed (not shown), and 99mTc-MAA injection was performed from the proper hepatic artery (arrow). (b) Axial 99mTc-MAA SPECT/CT image shows intense extrahepatic uptake in the gallbladder wall (black arrow) and the distal stomach and proximal duodenum (white arrow). (c) Angiogram shows that with selective placement of the catheter into the right hepatic artery, distal to the origin of the cystic artery and the right gastric artery (black arrow), and with coil embolization of the gastroduodenal artery (white arrow), nontarget distribution was avoided. (d) Axial 90Y bremsstrahlung SPECT/CT image shows the expected uptake in the right hepatic lobe, with no gallbladder wall uptake (black arrow) and no gastroduodenal uptake (white arrow).
achieve optimal oncologic outcomes. In addition, a multimodality imaging pattern approach is useful to avoid or anticipate possible complications, to ensure adequate microsphere distribution, and to plan subsequent therapeutic interventions.

Acknowledgments.—The location of the study, the facilities, and the study subjects were recruited at Emory University Affiliated Hospitals, Atlanta, Georgia. The authors express special thanks to Kevin J. Makowski, RBP, for the final figure editing.

References
Figure 12. Nontarget extrahepatic distribution. Images of a 49-year-old woman with metastatic colon cancer who was undergoing treatment evaluation show no extrahepatic activity at initial 99Tc-MAA SPECT/CT but do show extrahepatic activity at postprocedural 90Y bremsstrahlung SPECT/CT. (a) Angiogram obtained before 99Tc-MAA SPECT/CT shows an accessory left hepatic artery (1) originating from the left gastric artery (2). Postsurgical changes from a prior right hepatectomy are depicted, with a normal appearance of the left hepatic artery (thick arrow). (b) Coronal 99Tc-MAA SPECT/CT image shows no evidence of extrahepatic uptake. Segment IV was the only region being treated in this session (right lateral anatomic position was due to right hepatectomy). (c) Angiogram obtained at treatment shows selective placement of the catheter into the left hepatic artery (arrow). Note coil embolization of the gastroduodenal artery. (d) Coronal 90Y bremsstrahlung SPECT/CT image shows uptake within segment IV, but also in the proximal stomach (arrow), probably through flow redistribution to a small right gastric artery after embolization of the gastroduodenal artery. The patient was subsequently treated conservatively with sucralfate and did not develop complications.

