- 1. Turn on the centrifuge machines and cool the rotors.
- 2. Prepare buffers. 1-2 ml/15 cm dish of hypotonic buffer and 25-50 ml/15 cm dish of high and low salt buffer are required.
- 3. Wash the dishes once with PBS(-) (RT).
- 4. Add 1 ml ice cold PBS and harvest the cells with rubber policeman. Then collect the cells to orange cap tube and centrifuge in a Beckman GS-6 rotor 1,500 rpm, 4C for 5 min.
- 5. Remove sup. and resuspend ppt with 5 times packed cell volume (pcv) of hypotonic buffer. Spin 1,500 rpm, 4C, 5min.
- 6. Add 2 volume of original pcv of hypotonic buffer and resuspend the packed cells. Incubate 10 min on ice.
- 7. Transfer the cells to a glass Dounce homogenizer and homogenize with 10 strokes using pestle B. Check for cell lysis in a microscope. Add more strokes if necessary.
- 8. Collect the nuclei by centrifuging 15 min in a Beckman GS-6 rotor at 3,750 rpm (= 3210 xg), 4C. Remove sup and save for S-100 (see 9' below).
- 9. Using graduation of the tube, add 0.5 pnv (packed nuclear volume) of low salt buffer and resuspend with gentle pipetting.
- 10. In a dropwise fashion, while vortexing gently (setting 2), add 0.5 pnv of high salt buffer. Incubate 30 min on ice, on tilting board. Start preparing dialysis buffer.
- 11. Centrifuge the sample in Beckman TLS 55 rotor at 19,000rpm (=25,000 xg), 30 min, 4C.
- 12. Draw off resulting sup and dialyze against 500 volume of dialysis buffer for 3 hrs.
- 13. Centrifuge the extract in Beckman TLS 55 rotor at 19,000rpm (=25,000 xg) 20 min, 4C. Discard the ppt.
- 14. Determine the protein concentration of the sup (Bradford) and KCl concentration (conductivity meter). Aliquot into tubes and rapidly freeze in liquid N₂ or dry ice/methanol bath.

Cytoplasmic extraction (S-100).

9'. Add 0.11 vol of 10x cytoplasmic extract buffer.

10'. Centrifuge in Beckman 50 rotor at 40,000 rpm (=100,000 xg), 1 hr, 4C. to step12

Solutions

Add following protease inhibitors and reducing agent to hypotonic buffer, high salt buffer, and low salt buffer immediately before use.

1 mM PMSF (final) 4ul/ml 0.25 M PMSF (in ethanol stock) 1 tablet per 50 ml of solution of Complete Protease Inhibitor (Boehringer-Manheim)

*Hypotonic buffer (for 100 ml)

2 M KCl buffer (for 100 ml)

20 mM HEPES, pH 7.9 at 4C 1 M HEPES (pH7.9): 2 ml

1.5 mM MgCl ₂	1 M MgCl ₂	150 ul
25% glycerol	glycerol	25 ml
2 M KCl	3 M KCl	66.7 ml
0.2 mM EDTA	0.5 M EDTA	40 ul
	qH_2O	6.11 ml

KCl(-) buffer (for 100 ml)

20 mM HEPES, pH 7.9 at 4uC	1 M HEPES (pH7.9):	2 ml
1.5 mM MgCl ₂	1 M MgCl ₂	150 ul
25% glycerol	glycerol	25 ml
0.2 mM EDTA	0.5 M EDTA	40 ul
	qH_2O	73 ml

*High-salt buffer

20 mM HEPES, pH 7.9 at 4uC

1.5 mM MgCl₂ 25% glycerol 0.2 mM EDTA

for 1.0 M KCl, mix 1 vol of 2 M KCl buffer and

Desired KCl (0.8, 1.0, 1.2, 1.4, or 1.6 M) 1 vol of KCl(-) buffer.

*Low-salt buffer

20 mM HEPES, pH 7.9 at 4uC

1.5 mM MgCl₂ 25% glycerol 0.2 mM EDTA

0.02 M KCl Mix 1 vol of 2 M KCl buffer and 99 vol of KCl(-) buffer.

10x Cytoplasmic extract buffer (for 10 ml)

0.3 M HEPES, pH 7.9 at 4C	1 M HEPES (pH7.9)	3 ml
0.03 M MgCl_2	1 M MgCl ₂	300 ul
1.4 M KCl	3 M KCl	4.67 ml
	qH_2O	2.03 ml

Dialysis buffer (for 1 L) Make in a larger beaker to allow vigorous stirring.

1 M HEPES (pH7.9): 20 ml 20 mM HEPES, pH 7.9 at 4C 1.5 mM MgCl₂ 1.5 ml 1 M MgCl₂ 20 % glycerol glycerol 200 ml 100 mM KCl 3 M KCl 33.3 ml 0.2 mM EDTA 0.5 M EDTA 400 ul

745 ml qH_2O

174.2 mg/4 ml ethanol or isopropanol, add before cooling the buffer. 1 mM PMSF

1 mM DTT 154.2 mg

Ref.: Abmyr and Workman, Current Protocols in Molecular Biology: 12. 1. 1