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Abstract

Adhesion G protein-coupled receptors (AGPCRs) are a family of 33 receptors in humans exhibiting a conserved
general structure but diverse expression patterns and physiological functions. The large NH

2
termini characteris-

tic of AGPCRs confer unique properties to each receptor and possess a variety of distinct domains that can
bind to a diverse array of extracellular proteins and components of the extracellular matrix. The traditional view
of AGPCRs, as implied by their name, is that their core function is the mediation of adhesion. In recent years,
though, many surprising advances have been made regarding AGPCR signaling mechanisms, activation by
mechanosensory forces, and stimulation by small-molecule ligands such as steroid hormones and bioactive lip-
ids. Thus, a new view of AGPCRs has begun to emerge in which these receptors are seen as massive signaling
platforms that are crucial for the integration of adhesive, mechanosensory, and chemical stimuli. This review arti-
cle describes the recent advances that have led to this new understanding of AGPCR function and also dis-
cusses new insights into the physiological actions of these receptors as well as their roles in human disease.
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1. INTRODUCTION

G protein-coupled receptors (GPCRs) are the largest
superfamily of cell surface receptors, featuring >750
members in mammalian genomes. Mammalian GPCRs
have typically been classified as either Rhodopsin-
like, Secretin-like, Glutamate-like, or Frizzled-like (1). In
this classification system, adhesion GPCRs (AGPCRs),
marked by their large NH2 termini containing various
adhesion domains, are part of the Secretin-like family.
Evolutionary studies have revealed that AGPCRs are
an ancient family, predicted to have appeared �1,275
million years ago, although these prehistoric AGPCRs
generally had shorter NH2 termini (2). Elongation of
the receptors’ NH2 termini may have been prompted
by a need for increased interactions with the

extracellular environment, necessitating receptors
with larger extracellular domains (3). These evolution-
ary studies on AGPCRs have prompted suggestions
that AGPCRs should represent their own family of
GPCRs, as in the “GRAFS” classification system, which
divides GPCRs into Glutamate, Rhodopsin, Adhesion,
Frizzled, and Secretin families (4).
There are 33 AGPCR genes expressed in humans,

and the traditional names for many of these receptors
are idiosyncratic, relating to details associated with
the initial discovery of each receptor. Several years ago,
the Human Gene Nomenclature Committee worked with
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the International Union of Basic and Clinical Pharmaco-
logy (IUPHAR) and the Adhesion GPCR Consortium to
develop a unified nomenclature for AGPCRs. In this offi-
cial nomenclature, the name of each family member
begins with “ADGR,” a unique prefix referring to “adhe-
sion G protein-coupled receptor” (TABLE 1). ADGR is
then followed by letters and numbers relating to the
receptors’ subfamilies (5). In situations where a recep-
tor’s name is used repeatedly in written articles or oral
presentations, the “ADGR” can be dropped and the last
letter and number can be used alone for ease of refer-
ence (i.e., ADGRB1 can be referred to simply as “B1”).
This nomenclature is used in this review, along with
references to the receptors’ traditional names at the first
mention of each receptor in each section.
The general structural features of most AGPCRs

include an extracellular NH2-terminal domain, a GPCR
autoproteolysis-inducing (GAIN) domain, the seven-trans-
membrane (7TM) domain common to all GPCRs, and a
cytoplasmic COOH terminus (FIGURE 1). The domain
architectures of the large NH2 termini of AGPCRs have
led to the categorization of the 33 family members into
nine subfamilies based on the conserved domains:
ADGRL (group 1, latrophilins; LPHNs), ADGRE (group 2,
EMRs), ADGRA (group 3), ADGRC (group 4, CELSRs),
ADGRD (group 5), ADGRF (group 6), ADGRB (group 7,
BAIs), ADGRG (group 8), and ADGRV (group 9, GPR98).
Although this classification system is based on seq-
uence homology and domain conservation, recent anal-
yses have questioned whether this system might need
to be reevaluated (6).

2. STRUCTURE OF ADHESION GPCRs

Most AGPCRs possess large extracellular NH2-terminal
domains hundreds to thousands of residues in length, in
addition to membrane-spanning seven-transmembrane
(7TM) domains and intracellular COOH-terminal domains
(7). Almost all AGPCRs contain GPCR autoproteolysis-
inducing (GAIN) domains in the juxtamembrane region
of their NH2 termini, and these domains possess intrinsic
autoproteolytic activity (8). After self-cleavage of the
GAIN domain, adhesion GPCRs exist as two fragments
that remain noncovalently associated for at least some
period: an NH2-terminal fragment (NTF), which consists
of the NH2 terminus up to the site of GAIN domain cleav-
age, and a COOH-terminal fragment (CTF), which com-
prises the 7TM region plus the intracellular domains and
the small extracellular NH2-terminal stalk that remains af-
ter cleavage of the GAIN domain.
Over the past decade, there has been a major push

to understand the structures of AGPCRs in greater
detail. In 2012, X-ray crystal structures of the GAIN

domains from several adhesion GPCRs provided the
first high-resolution look at the structures of these
domains (9). Subsequent X-ray crystallography stud-
ies provided novel insights into the structures of the
extracellular regions (GAIN domains plus other NTF
domains) from ADGRG1 (GPR56) (10) and ADGRG6
(GPR126) (11). X-ray crystallography experiments have
also visualized the associations of portions of the
ADGRL1–3 (latrophilin-1 to -3) NTFs with their binding
partners FLRT2 (12) and teneurin-2 (13), and, inde-
pendently, cryo-electron microscopy (cryo-EM) studies
have provided a look at the interaction of ADGRL3
(latrophilin-2) with teneurin-2 (14).
Most recently, cryo-EM studies have yielded new

insights into the structure of full-length ADGRG3 (GPR97),
including images of the receptor coupled to its preferred
G protein, Gao, with this work representing the first-ever
view of an AGPCR-G protein complex (15). One interesting
aspect of this structure was that all three intracellular loops
of G3 were found to have extensive interactions with the
G protein heterotrimer, which is unusual relative to other
GPCR-G protein structures that have been solved to date
(16). Interestingly, it is known from previous biochemical
studies that adhesion GPCRs form surprisingly stable
complexes with their cognate G proteins, such that
AGPCR-G protein complexes often can be easily immuno-
precipitated together without the need for chemical cross
linking (17, 18). The recent ADGRG3-Gao structure pro-
vides insight into the remarkably robust associations of
active AGPCRs with the G proteins to which they couple.
Many important questions remain to be answered in

future AGPCR structural studies. For example, the
ADGRG3-Gao cryo-EM experiments were performed
using a version of G3 with a mutation in the GAIN domain
to prevent autoproteolysis (15). Furthermore, the condi-
tions of these experiments did not allow for high-resolu-
tion visualization of the ADGRG3 NTF. Thus, no insights
can be obtained from these studies about the relationship
between the receptor’s NTF and CTF after GAIN domain
cleavage. Additionally, the palmitoylation on the COOH
terminus of Gao was found in these studies to be inserted
directly into the ADGRG3 7TM core, a feature of the
ADGRG3-Gao complex that has not been observed for
other GPCR-G protein interactions (15). Most Ga subunits
have lipid modifications, but these lipid groups do not typ-
ically make direct contacts with receptors. Future work
will be necessary to determine whether this unusual
mode of receptor-G protein association is common to
other AGPCRs or unique to the ADGRG3-Gao complex.

2.1. Autoproteolysis of AGPCRs

Adhesion GPCRs can autoproteolytically cleave them-
selves at the GPCR proteolysis site (GPS), which is part
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Table 1. Annotated names and chromosomal locations of AGPCRs

ADG Nomenclature Name Alternative Name(s) Human Gene ID Location (chromosome) Exon Count

ADGRA1 GPR123 84435 10q26.3 9

ADGRA2 GPR124 25960 8p11.23 19

ADGRA3 GPR125 166647 4p15.2 21

ADGRB1 BAI1 575 8q24.3 35

ADGRB2 BAI2 576 1p35.2 32

ADGRB3 BAI3 577 6q12-q13 32

ADGRC1 CELSR1 9620 22q13.31 38

ADGRC2 CELSR2 1952 1p13.3 34

ADGRC3 CELSR3 1951 3p21.31 35

ADGRD1 GPR133/PGR25 283383 12q24.33 30

ADGRD2 GPR144/PGR24 347088 9q33.3 21

ADGRE1 EMR1/TM7LN3 2015 19p13.3-p13.2 23

ADGRE2 CD97/VBU/EMR2/CD312 30817 19p13.12 24

ADGRE3 EMR3 84658 19p13.12 17

ADGRE5 CD97/TM7LN1 976 19p13.12 20

ADGRF1 PGR19; GPR110; KPG_012; hGPCR36 266977 6p12.3; 6 16

ADGRF2 GPR111, PGR20, hGPCR35 222611 6p12.3 12

ADGRF3 GPR113, PGR23 165082 2p23.3 19

ADGRF4 GPR115, PGR18 221393 6p12.3 10

ADGRF5 GPR116, KPG_001 221395 6p12.3 25

ADGRG1 BFPP, BPPR, GPR56, TM7LN4, TM7XN1 9289 16q21 23

ADGRG2 CBAVDX, EDDM6, GPR64, HE6, TM7LN2 10149 Xp22.13 32

ADGRG3 GPR97, PB99, PGR26 222487 16q21 13

ADGRG4 GPR112, PGR17, RP1-299I16 139378 Xq26.3 28

ADGRG5 GPR114, PGR27 221188 16q21 13

ADGRG6 APG1, DREG, GPR126, LCCS9, PR126, PS1TP2, VIGR 57211 6q24.2 28

ADGRG7 GPR128 84873 3q12.2 16

ADGRL1 CIRL1, CL1, LEC2, LPHN1 22859 19p13.12 27

ADGRL2 CIRL2, CL2, LEC1, LPHH1, LPHN2 23266 1p31.1 39

Continued
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of the GAIN domain. The GAIN domain is conserved in
all AGPCRs except for ADGRA1 (GPR123), which pos-
sesses a short NH2 terminus devoid of any modular
domains (19). The GPS is conserved in all other AGPCRs
except for ADGRF2 (GPR111) and ADGRF4 (GPR115),
which lack the consensus GPS motif and do not appear
to undergo autoproteolysis (20). Other than ADGRA1,
ADGRF2, and ADGRF4, however, the other 30 members
of the human AGPCR family appear to possess intact
GAIN domains and GPS motifs, and there is good evi-
dence for most of these receptors that they undergo
autoproteolysis as a part of their normal processing (8).
This autoproteolysis occurs spontaneously, often during
receptor trafficking to the plasma membrane, and there
is little evidence that it can be modulated by ligand bind-
ing (8). However, the binding of ligands to AGPCRs can
exert conformational forces that may lead to dissociation
of the non-covalently-associated NTF and CTF regions
that have already been cleaved by autoproteolysis (8).

The GAIN domain is both necessary and sufficient for
the autoproteolytic process in AGPCRs (9). The NH2-

terminal portion of the GAIN domain consists of six
a-helices, whereas the COOH-terminal region closer to
the transmembrane portion of the receptor consists of a
twisted b-sandwich, including 13 b-strands and two small
a-helices (21). The GPS motif, which consists of the last
five b-strands of the portion of the NH2 terminus proxi-
mal to the transmembrane domain of the receptor, is an
integral part of this domain but is not functional by itself
(21). Interestingly, the GAIN domain is also known to be
the site of multiple human disease mutations (22). For
example, mutations of the GAIN domain of ADGRG1
cause bilateral frontoparietal polymicrogyria (BFPP)
(23). Additionally, mutations in the GAIN domains of
ADGRL1 and ADGRB1 genes are hot spots for human
cancers (21).
Beyond being found in AGPCRs, GAIN domains are

also found in polycystin-1 (PKD1) and the PKD1-like family
of related transmembrane proteins (8, 24). Mutations in
PKD1 are responsible for most cases of autosomal domi-
nant polycystic kidney disease, a leading cause of end-
stage renal disease, and a number of the disease-

Table 1.—Continued

ADG Nomenclature Name Alternative Name(s) Human Gene ID Location (chromosome) Exon Count

ADGRL3 CIRL3, CL3, LEC3, LPHN3 23284 4q13.1 32

ADGRL4 ELTD1, ETL, KPG_003 64123 1p31.1 15

ADGRV1 FEB4; GPR98; MASS1; USH2B; USH2C; VLGR1; VLGR1b 84059 5q14.3 91

This table lists all 33 adhesion G protein-coupled receptors (AGPCRs) with their standardized and alternate names, along with their human gene ID and
information about their chromosomal locations.
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FIGURE 1. Adhesion G protein-coupled receptors (AGPCRs) exhibit great structural diversity. The various adhesion GPCR subfamilies are depicted
with key motifs labeled. Cad, cadherin repeat; EAR, epilepsy-associated repeat; EGF, epidermal growth factor-like; GAIN, GPCR autoproteolysis-induc-
ing domain; HRM, hormone receptor motif; Ig, immunoglobulin-like; Lam, laminin; LRR, leucine-rich repeat; OLMD, olfactomedin-like; PBM, PDZ binding
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Figure created, with permission, using BioRender.com.
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causing mutations are located in the PKD1 GAIN domain
(24). Interestingly, although PKD1 is not a GPCR, it has
been shown to regulate G protein signaling in a man-
ner that is influenced by cleavage of the GAIN domain
(24). Along these same lines, GAIN domain cleavage
also plays a key role in regulating signaling by
AGPCRs, as described in sect. 3.

3. SIGNALING OF ADHESION GPCRs

Early work on AGPCRs, and early reviews of the field,
focused on the ability of these receptors to mediate ad-
hesive interactions (25, 26). Given that AGPCRs possess
7TM domains, which were known from work on other
GPCR families to allow coupling to G proteins, there was
speculation that AGPCRs may translate extracellular ad-
hesive interactions into intracellular signaling cascades,
but such signaling mechanisms were mostly hypotheti-
cal in the early years of the field (25, 26). However, the
past decade has seen numerous advances in under-
standing the activation of AGPCR signaling, not only by
adhesive interactions but also by mechanosensory
forces and secreted small-molecule ligands.

3.1. Canonical G Protein-Dependent Signaling

GPCRs function via their 7TM regions as guanine
exchange factors (GEFs) for heterotrimeric G proteins,
promoting the exchange of GDP for GTP on the Ga sub-
unit. The first evidence for G protein activation by an
AGPCR came from work on ADGRL1, which was shown

to bind to alpha-latrotoxin (derived from black widow
spiders) and stimulate increases in cyclic AMP and inosi-
tol (1,4,5)-trisphosphate (IP3) levels in ADGRL1-trans-
fected COS-7 cells treated with alpha-latrotoxin (27, 28).
Further work determined that ADGRL1 couples to Gao to
regulate cAMP and IP3 levels (27) and can also activate
phospholipase C by coupling to Gaq (29). Subsequently,
many AGPCRs have been shown to stimulate G protein-
dependent pathways (30), and certain AGPCRs have
even been shown to stimulate purified G proteins in vitro
(31–34) and coimmunoprecipitate with their cognate G
proteins from cells (17, 18), thereby providing strong evi-
dence for G protein coupling.

The various members of the AGPCR family all prefer-
entially couple to distinct subsets of G proteins (FIGURE
2A). This fact was vividly illustrated in screening assays
performed in 2012 in which the G protein coupling pref-
erences of a large number of AGPCRs were assessed
by measuring second messengers such as cyclic AMP
and inositol phosphate, which are traditionally down-
stream of G protein activation (35). These studies pro-
vided insights into the G protein coupling preferences of
several AGPCRs, including ADGRG3, which exhibited a
preference for coupling to Gao (35). Almost a decade
later, the aforementioned cryo-EM studies provided a
high-resolution view of Gao in association with the intra-
cellular loops of ADGRG3 (15).
Most G protein-coupled receptors can couple to mul-

tiple G protein subtypes to activate a diverse array of
signaling pathways (36), and AGPCRs are no excep-
tion. For example, the promiscuity of ADGRG2 (GPR64,
“G2”) has been well documented, with the receptor

α β γ

A BCanonical signaling mechanisms Non-canonical signaling mechanisms  

Gαs Gαi Gα12/13 Gαq

cAMP RhoA Ca2+
ERK Rac RhoA

β-arrestin RacGEFs RhoGEFs

FIGURE 2. Adhesion G protein-coupled receptors (AGPCRs) engage in diverse signaling mechanisms. A: AGPCRs can engage in canonical G pro-
tein-mediated signaling pathways, wherein a receptor engages with heterotrimeric G proteins to trigger G protein-dependent signaling cascades.
Shown here are Gas, Gai, Ga12/13, and Gaq, along with some of their downstream second messengers. B: AGPCRs can also engage in noncanonical
signaling pathways that are independent of heterotrimeric G proteins. For example, AGPCRs can engage with b-arrestins, RacGEFs or RhoGEFs,
among other signaling proteins, to activate various downstream pathways in a G protein-independent manner. Figure created, with permission, using
BioRender.com.
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coupling to Gas (37–41), Gaq (37, 40–43), and Ga12/13
(40, 42). In the case of nonadhesion GPCRs that pro-
miscuously couple to multiple G protein pathways, the
strength of coupling often varies dramatically depend-
ing on cellular context because of the presence of cell-
specific scaffold proteins that enhance certain path-
ways but not others (44). Many AGPCRs are known to
bind to cytoplasmic scaffold proteins (45–52), and
future studies in this area will undoubtedly shed light
on the extent to which these receptor-scaffold interac-
tions confer cell specificity to the receptors’ G protein
coupling preferences.

3.2. Noncanonical G Protein-Independent
Signaling of AGPCRs

Many GPCRs can directly interact with signaling pro-
teins other than heterotrimeric G proteins to mediate G
protein-independent signaling (44). Several AGPCRs
can mediate noncanonical signaling along these lines
(FIGURE 2B). For example, ADGRB1 (BAI1) and
ADGRB3 (BAI3) can regulate Rac signaling via interac-
tions with two distinct Rac-GEFs: DOCK180, which
associates with these receptors in complex with ELMO1
(53, 54), and Tiam1, which associates with ADGRB1 by
binding to the receptor’s distal COOH terminus (50).
ADGRB1 has also been shown to associate with the
RhoA-GEF Bcr to activate RhoA activity in hippocampal
neurons (55). More generally, several AGPCRs, includ-
ing ADGRG1, ADGRG2, ADGRB1, and ADGRB2 (BAI2),
have been shown to robustly couple to b-arrestins (17,
40, 41, 43, 49, 56, 57). Activity-dependent GPCR inter-
actions with b-arrestins are a common mode by which
GPCRs can mediate G protein-independent signaling
(58). For example, ADGRG2 signaling through b-arrestin-1
is essential for G2 regulation of fluid reabsorption in the
testis (43). The capacity of AGPCRs to signal through G
proteins, b-arrestins, and other signaling intermediates
provides an opportunity for the development of “biased”
ligands that preferentially activate one downstream sig-
naling pathway but not others. Such biased ligands can
serve as important research tools and also in some cases
make for useful therapeutics (58). A summary of all known
signaling pathways activated downstream of AGPCRs
(including G protein-mediated and noncanonical signaling
pathways) is shown in TABLE 2.

4. ACTIVATION OF ADHESION GPCRs

The earliest insights on the activation mechanisms of ad-
hesion GPCRs came from the aforementioned studies
on ADGRL1 demonstrating that engagement of the
receptor’s NH2 terminus by alpha-latrotoxin could

promote receptor signaling (27, 29, 59). Subsequent
studies on several different AGPCRs, including ADGRG1
(56), ADGRG4 (GPR112) (60), ADGRB1 (49), ADGRB2 (61),
and ADGRE5 (CD97) (62, 63), resulted in the surprising
observation that truncation of the receptors’ NH2 ter-
mini, up the point of predicted GAIN domain cleavage,
resulted in strong activation of receptor signaling. Taken
together, these findings provided the underpinnings
for the hypothesis (64) that the large NH2-terminal
regions of AGPCRs inhibit signaling by the receptors’
7TM regions, with NTF engagement resulting in either
NTF removal or conformational rearrangement to
remove inhibitory constraints and thereby activate re-
ceptor signaling.

4.1. Tethered Agonism

Other GPCRs that are known to become activated after
removal of NH2 terminal regions include the members of
the protease-activated receptor (PAR) subfamily. For
example, PAR1 can be cleaved by the secreted protease
thrombin to unveil a cryptic agonist on the receptor’s
NH2 terminus, resulting in receptor activation (65). Early
work on ADGRL1 signaling led to suggestions that
AGPCR signaling might have analogies to PAR signaling
(66). This hypothesis was explicitly tested in studies on
NTF-lacking versions of ADGRG6 (GPR126) and ADGRD1
(GPR133) (67). Similar to NTF-lacking versions of other
AGPCRs, as described above, truncated versions of
ADGRG6 and ADGRD1 exhibited high constitutive acti-
vation of Gas to raise cyclic AMP levels, and, interest-
ingly, removal of a portion of the postcleavage stalk (or
stachel) greatly reduced the signaling activity of these
truncated receptors (67). Moreover, exogenous adminis-
tration of the stachel peptide rescued the activity of
these mutant receptors (67). Similarly, independent stud-
ies demonstrated that the removal of portions of the
postcleavage stalk of ADGRG1 and ADGRF1 abolished
the activity of these receptors, with this activity being
restored after treatment with peptides corresponding to
the postcleavage stalk (31). Subsequently, similar find-
ings were made in work on ADGRG2 (GPR64) (37, 41)
and ADGRG5 (GPR114) (68).

The studies on the tethered agonist regions of
AGPCRs led to questions about how this sequence
might get exposed to lead to receptor activation. Do the
NTF and CTF regions of a cleaved AGPCR heterodimer
need to dissociate to expose the tethered agonist?
Studies on mutant versions of AGPCRs that lack intrinsic
GAIN domain protease activity (and therefore do not
undergo proteolysis) provided evidence against this
idea, as such noncleavable receptors have been shown
in many cases to exhibit levels of constitutive signaling
activity comparable to wild-type (self-cleaving) receptors
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Table 2. AGPCR G protein-dependent and alternate signaling pathways

Class Receptor Alt Name
G Protein Pathways

Activated
Other Signaling Pathways

Activated

A ADGRA1 GPR123

A ADGRA2 GPR124 Wnt7/b-Catenin (209–211, 213,
214); cdc42 (205, 217)

A ADGRA3 GPR125 Wnt/PCP/b-Catenin (333)

B ADGRB1 BAI1 Ga12/13/RhoA (18, 49) ELMO/Dock180/Rac (109);
Tiam1/Rac (50); Bcr/RhoA
(55); mdm2 (142, 277)

B ADGRB2 BAI2 Gaz (17); Ga16 (61) GABPc (334)

B ADGRB3 BAI3 ELMO/Rac1 (144)

C ADGRC1 CELSR1 Wnt/PKC (300); Rho (160, 161)

C ADGRC2 CELSR2 Gaq/Ca21 (165)

C ADGRC3 CELSR3 Gaq/Ca21 (165)

D ADGRD1 GPR133 Gas/cAMP (35, 67, 71, 281)

D ADGRD2 GPR144

E ADGRE1 EMR1

E ADGRE2 EMR2 Ga12/Ga13/Ga14/Gaz/ Gas/
Gai/Gaq (63); Ga16/PLC (63,
104); Ga15 (35, 63)

E ADGRE3 EMR3

E ADGRE5 CD97 Gaz/Ga14 (63); Ga12/ Ga13/
RhoA (62, 63)

F ADGRF1 GPR110 Gaq/IP1 (31, 39); Gas/cAMP
(39, 80)

NF-κB (169)

F ADGRF2 GPR111

F ADGRF3 GPR113

F ADGRF4 GPR115 Ga15 (35)

F ADGRF5 GPR116 Gaq/RhoA/Rac1 (313); Gaq/
Ga11/IP1 (204); Gas/cAMP
(234)

ERK1/2 (234)

G ADGRG1 GPR56 Ga12/Ga13/RhoA (18, 31, 56,
172, 176, 180, 193); Gaq/Ga11
(335); Gai (193)

G ADGRG2 GPR64 Ga12/Ga13/RhoA (40, 42);
Gas/cAMP (37–41); Gaq (37,
40–43)

b-Arrestin (41)

G ADGRG3 GPR97 Gao (15, 35) RhoA/cdc42 (122)

Continued
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(18, 69–71). Recent studies employing bioorthogonal
labels have revealed that the tethered agonist region
can become exposed within the context of an NTF-CTF
AGPCR heterodimer through intra-GAIN domain move-
ments (72). These findings suggest a model in which the
tethered agonist can become exposed through GAIN
domain conformational changes, rather than strictly
requiring NTF-CTF dissociation.

4.2. Beyond Tethered Agonism

In addition to masking cryptic tethered agonist sequen-
ces, AGPCR NTF regions can influence receptor signal-
ing activity in other ways (FIGURE 3). In certain AGPCRs,
for example, removal of the tethered agonist/stachel
sequence does not appear to impair receptor signaling
activity (18). Similarly, mutation of the tethered agonist/
stachel sequence in ADGRG1 does not disrupt activation
of the receptor by antibodies that bind to the NTF (73).
These studies suggest that the NTF controls AGPCR
signaling activity in at least two distinct ways: 1) modula-
tion of the accessibility of the tethered agonist/stachel
region and 2) interaction with other AGPCR regions
(such as perhaps the extracellular loops) to mediate
conformational changes that determine receptor sig-
naling activity.

The ability to temporally control AGPCR signaling is
crucial for probing the effects of AGPCRs on physiology.
In theory, stachel peptides can be useful reagents for

temporal control of AGPCR signaling, similar to how
SFLLRN and related peptides from the PAR1 NH2 termi-
nus have been used for years as ligands to exert tempo-
ral control over the activity of PAR1 (65). However, the
stachel peptides are fairly well conserved between dif-
ferent AGPCRs and therefore tend to exhibit a lot of
cross-reactivity between receptors, especially at the
high concentrations at which these peptides must be
used (39). Moreover, stachel peptides often do not acti-
vate full-length AGPCRs, instead activating only highly
truncated versions of AGPCRs that have had their
stalk regions removed or mutated (31, 74). A different
approach to temporal control of AGPCR signaling has
been the development of mutant versions of AGPCRs
with the PAR1 NH2 terminus fused to the GPS cleavage
site to allow for thrombin-dependent exposure of the
AGPCR tethered agonist, leading to receptor activation
(34). Such PAR/AGPCR chimeras can be useful tools in
allowing for temporally controlled activation of AGPCR
signaling pathways.

5. ADHESION GPCR LIGANDS

Beyond the use of stachel peptides and PAR/AGPCR
chimeras, another way that temporal control over
AGPCR signaling can be exerted is via the use of
ligands. Most AGPCRs have massive NH2 termini with
multiple conserved domains, suggesting that each

Table 2.—Continued

Class Receptor Alt Name
G Protein Pathways

Activated
Other Signaling Pathways

Activated

G ADGRG4 GPR112 Ga12/Ga14 (60)

G ADGRG5 GPR114 Gas (68)

G ADGRG6 GPR126 Gas/cAMP (39, 67, 184, 186,
336); Gaq/Ga12/a13 (336)

G ADGRG7 GPR128 ELMO (230)

L ADGRL1 Lphn1/CIRL1 Gaq/Ca21 (29, 136); Gao (27,
29)

L ADGRL2 Lphn2/CIRL2 Gas/cAMP (135)

L ADGRL3 Lphn3/CIRL3 Gaq/Ga12/a13 (34); Gas/cAMP
(135)

L ADGRL4 ETL

V ADGRV1 VLRG1 Gaq/PKC (241); Gas/cAMP/
PKA (241); Gai (242)

This table displays the 33 adhesion G protein-coupled receptors (AGPCRs), organized by class, along with the documented G protein-dependent and
alternate signaling pathways downstream of each receptor. This table highlights the diverse signaling capabilities of AGPCRs.
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receptor possesses the capacity to bind to numerous
extracellular partners. Indeed, various binding partners,
mostly large adhesion proteins and/or components of
the extracellular matrix, have been identified for many
AGPCRs (FIGURE 4). Some of these binding partners
modulate receptor signaling activity, whereas others
seem to solely mediate adhesive interactions. In any
case, the elucidation of a receptor’s interacting partners
can shed crucial light on that receptor’s physiological
effects. For this reason, the various AGPCR ligands/bind-
ing partners (summarized in TABLE 3) are discussed in
the sections below in the context of understanding the
physiological actions of AGPCRs.

5.1. Mechanosensory Signaling

The physical interaction of AGPCRs with extracellular
adhesive ligands may, in many cases, not be enough to
stimulate receptor signaling: the conveyance of mecha-
nosensory force via these protein-protein associations
may also be required. Indeed, over the past decade,
multiple lines of evidence have emerged to suggest that
detection of mechanosensitive stimuli is a primary physi-
ological role of AGPCRs (FIGURE 5A). For example, the
Drosophila ADGRL ortholog dCIRL is highly expressed
in chordotonal neurons, the principal mechanosensory

cells in flies, and genetic deletion of dCIRL results in
sharply diminished touch sensitivity of the flies as well
as greatly reduced physiological responses of the chor-
dotonal neurons to mechanosensitive stimuli (75). This
mechanosensory action of dCIRL is dependent on
the receptor’s extracellular region, tethered agonist
sequence, and G protein-dependent coupling to regu-
late cyclic AMP levels but is not dependent on autopro-
teolysis of the GAIN domain (70). In addition to the
expression of dCIRL in the chordotonal neurons, the re-
ceptor is also expressed in the flies’ nociceptive neurons
that respond to much higher intensities of mechanical
stimulation; interestingly, although dCIRL sensitizes the
responses of the chordotonal neurons to low-intensity
mechanical stimuli, the receptor dampens high-inten-
sity mechanosensitive activation of the nociceptive
neurons, thereby revealing a differential role of the re-
ceptor in detecting low- versus high-intensity mecha-
nosensation (76).

In addition to the body of work from studies in
Drosophila, there is also evidence that vertebrate AGPCRs
serve as mechanosensors. G protein-dependent signaling
by ADGRG6 (77) and ADGRG5 (GPR114, “G5”) (68) can be
greatly enhanced by mechanically stressing cultured cells
that express these receptors. Similarly, knockdown or de-
letion of ADGRV1 (VLGR1, or “V1”) from certain cell types

A BNTF inhibition of AGPCR Signaling Disinhibition of AGPCR Signaling Upon
Ligand Engagement

GAIN domain

Tethered agonist
concealed

Adhesive
ligand

Tethered agonist
unveiled

Signaling

FIGURE 3. Adhesion G protein-coupled receptor (AGPCR) NH2-terminal fragments suppress receptor signaling in multiple ways. A: for many (if not
all) AGPCRs, the NH2-terminal fragment (NTF) inhibits receptor signaling via concealment of the tethered agonist sequence, and for some receptors
there is evidence that the NTF also exerts additional allosteric actions on the COOH-terminal fragment (beyond concealing the tethered agonist) that
suppress receptor activity. GAIN, GPCR autoproteolysis-inducing domain. B: after engagement with an adhesive ligand, the NTF can change conforma-
tion such that multiple modes of inhibition are released. For example, the activated receptor may no longer experience allosteric inhibition by the NTF
and additionally has an unveiled tethered agonist sequence that can fully activate receptor signaling. Figure created, with permission, using
BioRender.com.
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dramatically reduces cellular responses to mechanical
stretch, thereby providing evidence that V1 plays an im-
portant mechanosensory role (78). In studies on cells
expressing ADGRE5 (CD97), it was found that the appli-
cation of mechanical force provokes phosphorylation
of a key serine residue on the receptor’s cytoplasmic
COOH terminus, with this phosphorylation event dis-
rupting the receptor’s interaction with the scaffold pro-
tein DLG1 and perturbing the receptor’s ability to
mediate cellular adhesion (51). The recently solved
crystal structure of ADGRE5 in complex with its large
extracellular ligand CD55 provides insight into how E5
can serve a mechanosensory role, as the antiparallel
binding of the E5-CD55 complex suggests a mechanism

for the transmission of tensile force and the consequent
force-dependent repositioning of the tethered agonist to
modulate receptor activity (79).

5.2. Small-Molecule Ligands

Although the realization that AGPCRs canmediate mecha-
nosensory signaling has been a surprising advance in
recent years, an even more surprising insight has been
that AGPCR signaling can be activated by small-molecule
ligands (FIGURE 5B). Some of these ligands are putative
endogenous ligands, for example, the bioactive lipid syn-
aptamide, which binds to the GAIN domain of ADGRF1
(GPR110) and agonizes receptor signaling (80, 81).

A BMembrane-tethered adhesion ligand

Teneurin FLRT

ADGRLGAIN

Liver
FNDC4

GAIN

ADGRF5

Adipose cell

Soluble, secreted protein ligand

C DSmall molecule ligand Homophilic ligand interactions

Glucocorticoid

Adrenal gland

ADGRG3

GAIN

Cadherin
Domains

GAIN

ADGRC

GAIN

FIGURE 4. Adhesion G protein-coupled receptors (AGPCRs) can engage with a diverse array of ligands to exert their physiological actions. A: some
AGPCR ligands are membrane-tethered adhesion ligands, for example, the teneurins and FLRTs that interact across synapses with postsynaptic
ADGRL1–3 to regulate synapse formation. B: other AGPCR ligands are soluble, secreted proteins, for example, the hepatokine FNDC4, which can acti-
vate ADGRF5 to regulate adipose cell physiology. C: some AGPCRs bind to endogenous ligands that are small molecules, as in the case of glucocorti-
coids activating ADGRG3 to exert physiological effects in the adrenal cortex (15). D: certain AGPCRs can engage in homophilic or heterophilic
interactions with other AGPCRs. For example, ADGRC receptors can interact with each other across cellular junctions via their cadherin-like domains.
GAIN, GPCR autoproteolysis-inducing domain. Figure created, with permission, using BioRender.com.
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Table 3. AGPCR-ligand binding and physiological significance

Class Receptor Alt Name AGPCR Ligands Physiological Significance Reference(s)

A ADGRA1 GPR123

ADGRA2 GPR124 aVb3-integrin Adhesion and migration
during angiogenesis

(208, 218)

Glycosaminoglycans CNS vascularization and
BBB establishment

(207, 208)

ADGRA3 GPR125

B ADGRB1 BAI1 aVb5-integrin Endothelial cell proliferation (337)

Phosphatidylserine Macrophage engulfment (109)

Lipopolysaccharide Macrophage engulfment (111)

RTNR4 Neuronal development (145, 146)

CD36 Inhibition of angiogenesis (274, 279)

ADGRB2 BAI2

ADGRB3 BAI3 C1q11–C1q14, C1q-like-3 Synapse formation; myo-
blast fusion; insulin
secretion

(147–151, 231)

C ADGRC1 CELSR1

ADGRC2 CELSR2 Homophilic interactions Axon guidance; neurite
growth

(165)

ADGRC3 CELSR3 Homophilic interactions Axon guidance; neurite
growth

(165)

Dystroglycan Axon guidance; neurite
growth

(168)

D ADGRD1 GPR133

ADGRD2 GPR144

E ADGRE1 EMR1

ADGRE2 EMR2 Chondroitin sulfate Adhesion (96, 97)

ADGRE3 EMR3

ADGRE5 CD97 Chondroitin sulfate T and B cell interaction (96–98)

aVb3-, a5b1-integrins Angiogenesis (98)

LPA receptor Tumor invasion (62)

CD90 Leukocyte trafficking to
inflammatory sites

(95)

CD55 T cell activation (79, 93, 94, 99–101)

Continued
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Table 3.—Continued

Class Receptor Alt Name AGPCR Ligands Physiological Significance Reference(s)

F ADGRF1 GPR110 Synaptamide Synaptogenesis (80, 81)

ADGRF2 GPR111

ADGRF3 GPR113

ADGRF4 GPR115

ADGRF5 GPR116 FNDC4 Glucose homeostasis (234)

Surfactant Protein-D Pulmonary surfactant pool
size regulation

(200, 201)

G ADGRG1 GPR56 Collagen III Cortical development and
lamination; hemostatic
plug formation

(82, 177, 180, 193, 247)

Heparin Cell adhesion and
migration

(249)

Transglutaminase-2 Central nervous system
myelination and mela-
noma progression

(178, 179, 181, 225, 258)

Progastrin Colonic mucosal
proliferation

(250)

Phosphatidylserine Synaptic pruning (183)

ADGRG2 GPR64

ADGRG3 GPR97 Glucocorticoids Adrenal cortex secretion (15)

ADGRG4 GPR112

ADGRG5 GPR114

ADGRG6 GPR126 Collagen IV Peripheral nerve
development

(189)

Laminin-211 Schwann cell development (77)

Cellular Prion Protein Schwann cell function (190)

ADGRG7 GPR128

L ADGRL1 Lphn1/CIRL1 a-latrotoxin Toxin docking with cells (27–29, 59, 125, 126, 128)

Teneurins Neuronal pathfinding and
synaptogenesis

(13, 136, 137, 140)

Neurexins Transsynaptic connection
formation

(59)

FLRT proteins Synaptic development (13, 139)

ADGRL2 Lphn2/CIRL2 Teneurins Axon guidance (13, 133, 135, 137)

FLRT proteins Synaptic development (13, 133, 139)

Continued
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Additionally, steroid hormones such as glucocorticoids
have been shown to bind to the 7TM region of
ADGRG3 and promote coupling of the receptor to G
proteins (15). These observations that AGPCRs can be
activated by small-molecule ligands have led to a para-
digm shift in the field, away from the view that the core
function of AGPCRs is the mediation of adhesion and
toward a more inclusive model in which AGPCRs serve
as massive signaling platforms that are crucial for the
integration of adhesive, mechanosensory, and chemi-
cal stimuli.

Beyond the putative endogenous ligands mentioned
above, other small-molecule ligands that have been
recently identified for AGPCRs include druglike com-
pounds found in high-throughput screening campai-
gns. For example, beclomethasone was identified in
high-throughput screens as an agonist for ADGRG3
(35). Similarly, screens for ADGRG1 ligands identified
3-a-acetoxydihydrodeoxygedunin as an agonist (33,
82) and dihydromunduletone as an antagonist (32), whe-
reas screens for ADGRG6 ligands identified apomorph-
ine as an agonist (83). Interestingly, beclomethasone,

Table 3.—Continued

Class Receptor Alt Name AGPCR Ligands Physiological Significance Reference(s)

ADGRL3 Lphn3/CIRL3 Teneurins Neuronal reshaping; syn-
apse formation; axon
guidance

(14, 133, 135, 137)

FLRT proteins Synaptic development (12, 14, 133, 139)

ADGRL4 ETL

V ADGRV1 VLGR1

This table displays the 33 adhesion G protein-coupled receptors (AGPCRs) along with their known ligands and a brief summary of the physiological sig-
nificance that has been elucidated for each receptor/ligand pair. The information contained in this table underscores the diverse range of ligands
engaged by AGPCRs, including adhesion proteins, extracellular matrix components, secreted peptides, and small molecules. BBB, blood-brain barrier;
CNS, central nervous system; LPA, lysophosphatidic acid.

 

A  B C 

Longitudinal shear force

Lateral shear force 

Mechanosensation Detection of
Small Molecules 

Intercellular Adhesion 

Signaling 

FIGURE 5. Adhesion G protein-coupled receptors (AGPCRs) can integrate heterogeneous signals. A: AGPCRs can detect shear forces via the extrac-
ellular matrix and transduce these forces into intracellular signaling. B: AGPCRs can also respond to secreted small molecules to induce signaling. C:
AGPCRs can mediate adhesion signaling by sensing intercellular interactions with ligands that are large proteins or membrane lipids. The integration of
all of these heterogeneous signals may be a central function of AGPCRs. Figure created, with permission, using BioRender.com.

PHYSIOLOGY OF ADHESION GPCRs

Physiol Rev �VOL 102 � OCTOBER 2022 � www.prv.org 1599

Downloaded from journals.physiology.org/journal/physrev at Emory Univ (170.140.142.252) on August 12, 2022.

http://www.prv.org


3-a-acetoxydihydrodeoxygedunin, dihydromunduletone,
and apomorphine all exhibit four-ring structures that are
reminiscent of steroid hormones. Thus, the aforemen-
tioned recent report that ADGRG3 is activated by gluco-
corticoids (15) may be a harbinger of more reports to
come about AGPCR stimulation by steroid hormones.
Indeed, there exists extensive literature on the rapid,
“nongenomic” actions of steroid hormones that are not
mediated by traditional nuclear steroid receptors (84, 85).
In many cases, these mysterious steroid hormone effects
are mediated by unidentified G protein-coupled recep-
tors (84, 85). Thus, given that the residues comprising the
steroid hormone-binding pocket of ADGRG3 are highly
conserved in many other AGPCRs (15), it is plausible that
other AGPCRs may be activated by steroid hormones,
with these steroid-AGPCR pairings accounting for some
of the currently unexplained rapid physiological actions
of steroid hormones.

6. PHYSIOLOGY OF ADHESION GPCRs

Adhesion GPCRs control many diverse physiological
processes throughout the body. Physiological actions
known to be mediated by AGPCRs are described below,
subdivided by system and also by receptor subfamily. In
cases where a specific AGPCR ligand or downstream
signaling pathway has been identified as physiologically
relevant, these ligands and/or signaling pathways are
discussed in the context of the receptor’s physiological
effects.

6.1. Immune System

6.1.1. ADGRE subfamily.

The earliest studies on the physiological actions of
AGPCRs came from work on the immune system (86). In
1981, the F4/80 receptor (now known as ADGRE1, EMR1,
or “E1”) was characterized as a cell surface marker for
mouse macrophages (87). Subsequent work has dem-
onstrated that the expression pattern of ADGRE1 varies
dramatically between different species; in humans, for
example, this receptor is expressed primarily in eosino-
phils (88). Genomic analyses have revealed that E1 is
evolving rapidly, with large variations in NTF domain
architecture between different species (89), suggesting
a species-specific role in immune system physiology for
this founding member of the AGPCR family.

Another member of the ADGRE subfamily that has
garnered intense interest concerning immune function
is ADGRE5 (CD97, “E5”). This receptor is expressed in a
wide range of hematopoietic cells as well as in smooth
muscle cells (90). Studies utilizing antibodies that block

the function of E5 have shown that this receptor is crit-
ically important for controlling neutrophil migration and
mediating antibacterial immunity (91). Insofar as E5 can
dictate the localization and activity of immune cells such
as neutrophils and macrophages, it also plays a critical
role in inflammatory processes, as illustrated in studies
demonstrating that both E5 neutralizing antibodies (92)
and genetic deletion of E5 reduce inflammation in
mouse models of rheumatoid arthritis (93).
The ability of E5 to control the localization and activity

of immune cells depends upon engagement of the
receptor’s NTF with various extracellular binding part-
ners (FIGURE 6A). E5 has been shown to bind via its
large extracellular NTF to two distinct GPI-linked surface
proteins, CD55 (also known as the Decay-Accelerating
Factor, or DAF) (94) and CD90 (also known as Thy-1)
(95), as well as to chondroitin sulfate glycosaminogly-
cans (96–98) and a5b1-integrin (98). The most inten-
sively studied of these interactions is ADGRE5-CD55,
with strong evidence for the in vivo importance of this
interaction deriving from the fact that similar phenotypes
(reduced inflammation in mouse models of rheumatoid
arthritis) are observed upon genetic deletion of either
E5 or CD55 (93). The E5-CD55 interaction can mediate
adhesion between different cell types and also has
physiological consequences for each partner: E5 modu-
lates the ability of CD55 to affect T cell activation (99,
100), and reciprocally CD55 regulates the stability of
ADGRE5 expression on leukocytes (101). Recent X-ray
crystallography studies have provided a high-resolution
view of CD55 in complex with the epidermal growth
factor (EGF)-like domains of the E5 NTF and demon-
strated that the two proteins bind antiparallel to one
another (79). This work revealed that the E5-CD55
complex can withstand tensile force, thereby provid-
ing a potential mechanism for mechanosensitive acti-
vation of ADGRE5 (79).
As with ADGRE1 and ADGRE5, the other members of

the ADGRE subfamily, ADGRE2 (EMR2, “E2”), ADGRE3
(EMR3, “E3”), and ADGRE4 (EMR4, “E4”), are also pre-
dominantly expressed in immune cells. E2 is highly
expressed in neutrophils, and agonistic antibodies that
stimulate the receptor can potentiate neutrophil activa-
tion in vitro (26). Increased ADGRE2 expression on neu-
trophils has been correlated in patients with systemic
inflammation and cirrhosis of the liver (102, 103). E2 is
also found in macrophages, with antibody-mediated
stimulation of the receptor promoting macrophage dif-
ferentiation as well as the expression of proinflammatory
mediators (104, 105). E3 is a marker for granulocytes
(106), but the receptor’s function in this cell type is still
not fully understood. E4 is a pseudogene that does
not express as a functional receptor in humans but
yet is expressed as a full-length receptor in activated
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macrophages and other immune cells from apes, mice,
and other species, suggesting an intriguing difference in
immune cell physiology between humans and other ani-
mals (107, 108).

6.1.2. ADGRB subfamily.

Although members of the ADGRE subfamily were the
first AGPCRs to be studied in the context of the immune
system, AGPCRs from other subfamilies have also been
found to exert striking effects on immune function. For
example, ADGRB1 (BAI1, “B1”) has been shown to play a
key role in macrophage engulfment of apoptotic cells
(109, 110) (FIGURE 6B). B1 possesses multiple NH2-termi-
nal thrombospondin-like repeats, which can bind to
externalized phosphatidylserine, a key signal of apopto-
sis (109, 110). In further work, the B1 NTF was also shown
to recognize surface lipopolysaccharides on Gram-neg-
ative bacteria, with this association allowing for macro-
phage engulfment of the bacteria (111). The role of B1 in
engulfment is facilitated by the interaction of the B1
COOH terminus with ELMO and DOCK proteins, which
allow B1 to stimulate Rac pathways crucial for engulf-
ment (109, 111). Interestingly, ADGRB1 also plays an im-
portant role in promoting the production of reactive
oxygen species by macrophages (112), demonstrating
that the receptor assists macrophages in their battle

against bacteria both by enhancing macrophage micro-
bicidal activity as well as by promoting engulfment. In
addition to mediating macrophage antibacterial activity,
B1 can also promote antiviral actions by macrophages
(113). Recent work has shown that B1 can be difficult to
detect in monocyte-derived macrophages (114), suggest-
ing that the receptor’s expression in these cells may be
regulated in ways that are not yet defined.

6.1.3. ADGRG subfamily.

ADGRG1 (GPR56, “G1”) exhibits high expression in
CD56-null CD161 natural killer (NK) cell subsets in the
blood and inflamed peripheral tissues (115, 116). Over-
expression of G1 in NK cells impairs this cell type’s ability
to migrate (116). G1 also negatively regulates other NK
cell properties, including the production of inflammatory
cytokines, degranulation, and target cell killing (117). In
addition to G1 expression in NK cells, recent studies
have demonstrated that this receptor can also be
expressed in effector CD41 memory T cells that reex-
press CCR7 and CD45RA (118, 119), where its expression
correlates with decreased TNF and IFN-c production
(119). Further work is needed to define the precise role(s)
of G1 in T cells and compare/contrast the receptor’s
actions in this cell type to its more intensively studied ac-
tivity in NK cells.

Phosphatidylserine

Transitional B
cell

Follicular B
cell

Apoptotic cell

Macrophage

Antigen
presenting

cell

ADGRE5

NFκB
p50/p65

CREB
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ADGRB1
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Dock180
ELMO

CD55

T cell

ADGRG3-mediated B cell
development

ADGRB1-mediated engulfment of
apoptotic cells

ADGRE5-mediated T cell
activation

FIGURE 6. Adhesion G protein-coupled receptors (AGPCRs) have important roles in immune system physiology. A: ADGRE5 is expressed on anti-
gen-presenting cells and recognizes CD55 on T cells to promote T cell activation. B: ADGRB1 in macrophages can interact via its thrombospondin
repeats with exposed phosphatidylserine on apoptotic cells to induce engulfment. C: ADGRG3 is a key regulator of B cell fate, with the presence of
ADGRG3 leading to decreased NF-κB signaling, cytoplasmic localization of CREB, and maintenance of follicular B cell populations. Figure created, with
permission, using BioRender.com.
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ADGRG3 (GPR97, “G3”) has been shown to exert ro-
bust effects on B cell development (120). Mice lacking
G3 exhibit a disorganized architecture of the spleen,
including a sharply decreased follicular B cell population
(120) (FIGURE 6C). Moreover, genetic deletion of G3
reduces macrophage migration into white adipose
tissue, while simultaneously increasing macrophage
migration into metabolic organs such as the liver and
kidney (121). G3 has also been shown to be expressed
in neutrophils, eosinophils, and mast cells (116, 122),
although little is yet known about the receptor’s actions
in these cell types. The fact that G3 is robustly exp-
ressed in multiple immune cells is fascinating with regard
to the recent revelation that G3 can be activated by gluco-
corticoids (15), as glucocorticoids are known to exert
powerful effects on the physiology of many different cell
types in the immune system, including a multitude of mys-
terious “nongenomic” actions that are not mediated via
classical nuclear glucocorticoid receptors (123).

6.2. Nervous System

6.2.1. ADGRL subfamily.

Many adhesion GPCRs are highly expressed in the nerv-
ous system (124), with the earliest studies on AGPCRs in
this system coming from work on ADGRL1–3. These
receptors are also known as “latrophilins” because it
was shown several decades ago that they can bind via
their NTF regions to black widow spider alpha-latrotoxin
(27, 125). Subsequent work demonstrated that the
actions of alpha-latrotoxin on nervous system function
(including the toxin’s dramatic effects on neurotransmit-
ter release) are mainly mediated via the formation of
nonspecific cation channels by alpha-latrotoxin itself
rather than through the toxin’s activation of ADGRL sig-
naling pathways (126, 127). Nonetheless, alpha-latrotoxin
as an NH2-terminal ligand capable of modulating
ADGRL signaling proved to be a useful tool to elucidate
some of the physiological actions of the members of this
receptor subfamily.

Early studies on mice lacking ADGRL1 did not reveal
any dramatic phenotypes (128). In vertebrates, ADGRL1
(“L1”) and ADGRL3 (“L3”) are largely expressed in the
nervous system, whereas ADGRL2 (“L2”) exhibits a
wider pattern of expression (126, 129). Genetic deletion
of ADGRL2 was found to result in embryonic lethality
(130), demonstrating an essential function of the recep-
tor in one or more organs in the body, similar to the
essential role in development played by LAT-1, the
Caenorhabditis elegans ortholog of ADGRL1–3 (131,
132). Although the embryonic lethality of L2-knockout
mice made it difficult to discern the receptor’s effects on
brain physiology, mice with brain-specific deletion of L2

were found to be viable (130) and to exhibit decreased
numbers of dendritic spines as well as input-specific
impairments in the wiring of the stratum lacunosum
moleculare in the CA1 region of the hippocampus (130,
133). Fascinatingly, mice lacking L3 were found to exhibit
input-specific perturbations in distinct CA1 subfields, the
stratum oriens and stratum radiatum (133), thereby dem-
onstrating the exquisite specificity of ADGRL regulation
of synaptic development. In related studies, L2 and L3
were found to play crucial roles in Purkinje cell formation
of parallel fiber synapses in the cerebellum, with genetic
deletion of both receptors together resulting in a dra-
matic loss in parallel fiber synaptic function (134). The
effects of L2 and L3 on synaptic wiring have recently
been shown to be dependent on the receptors’ G pro-
tein-mediated signaling (135), which connects the recep-
tors’ signaling activity to their profound effects on
synapse formation.
Many of the physiological actions of ADGRL1–3 are due

to interactions with the receptors’ extracellular binding
partners. Specifically, these receptors have been shown
to associate transcellularly via their NTF regions with ten-
eurins (136–138) and FLRTs (139). Teneurin-2 is proteolyti-
cally shed during the course of synaptic development and
can stimulate signaling by L1 on axonal growth cones to
control axon attraction (140). Similarly, the aforementioned
effects of L3 knockout on synaptic development in the
hippocampal CA1 region cannot be rescued by mutant
versions of L3 lacking the ability to interact with either
FLRTs or teneurins, suggesting that ADGRL3 interactions
with both classes of binding partners are essential for
the ability of L3 to control synaptic wiring (133). Comple-
mentary in vivo studies have demonstrated that disruption
of the ADGRL-teneurin association impairs excitatory syn-
apse formation (14) and disruption of ADGRL-teneurin-
FLRT complex formation perturbs the migration of neu-
rons from cortical explants (13). Taken together, this body
of work demonstrates that transcellular interactions of
ADGRL1–3 with teneurins and FLRTs are critically impor-
tant for dictating synapse formation in the brain.

6.2.2. ADGRB subfamily.

Another subfamily of adhesion GPCRs that exerts pro-
found effects on synaptic function is ADGRB1–3 (BAI1–3,
“B1–3”). Early work demonstrated that ADGRB1 is con-
centrated in the postsynaptic density (49, 50) and that
knockdown of B1 both in cultured neurons (50) and in
vivo (141) reduces dendritic spine formation in a manner
dependent on the ability of the B1 COOH terminus to
interact with Tiam1 to regulate Rac. ADGRB1 has also
been shown to regulate dendritic arborization via associ-
ation with the RhoGEF Bcr to control Rho signaling (55).
These findings demonstrate that different signaling
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pathways emanating from a single AGPCR can exert
highly distinct physiological actions (FIGURE 7).
Consistent with the idea that B1 is a key regulator of
excitatory synapses in the brain, knockout mice lacking
B1 were found to exhibit perturbations in postsynaptic
density structure in addition to profound defects in syn-
aptic plasticity and spatial learning (142).

Studies on B2 and B3 suggest that these receptors
play roles similar to B1 in the nervous system, albeit at
different populations of synapses. Mice lacking B2 have
been shown to exhibit enhanced hippocampal neuro-
genesis and resistance to depressive phenotypes in
mouse models of depression (143). B3 has been found
to control dendritic arborization and branching both in
vitro in cultured neurons and in vivo in Purkinje cells of
the cerebellum (144). Further work in this area will likely
clarify the synapse-specific actions of the various mem-
bers of the ADGRB subfamily.
The striking effects of ADGRB1–3 in controlling dendri-

tic growth and synaptic function are dependent on inter-
actions of the receptors’ NTF regions with various
extracellular binding partners. For example, B1 has been
shown to interact via its NH2-terminal thrombospondin-
like repeats with reticulon-4 receptors (RTN4Rs) (145,
146) in a manner that regulates dendritic arborization
and synapse formation (145). Conversely, the thrombo-
spondin-like repeats of ADRGB3 have been found to as-
sociate with the complement-like proteins C1ql1–4, with
this association influencing synapse formation in cul-
tured neurons (147). In vivo, C1ql1 promotes dendritic
spine formation in Purkinje cells in a manner that
depends upon the presence of B3 (148). Similarly, at a

specific synaptic connection in the olfactory bulb, dele-
tion of either C1ql3 or B3 results in a very similar pheno-
type (suppressed acquisition of the social transmission of
food preference), thereby providing further evidence for
the importance of the B3-C1ql interaction in vivo (149).
Interactions of ADGRB3 with different members of the
C1ql family have distinct effects on physiology, as, for
example, that binding of B3 to C1ql4 inhibits secretion
from pancreatic b-cells (150). The C1ql proteins most likely
exert their effects on nervous system physiology by link-
ing the ADGRB receptors to other key synaptic proteins,
an idea advanced by recent work identifying the neuronal
pentraxins NPTX1 and NPTXR as components of cell-cell
adhesion complexes with C1ql3 and B3 (151).

6.2.3. ADGRC subfamily.

Similar to members of the ADGRB subfamily, ADGRC1–3
(Celsr1–3, “C1–3”) have also been shown to play key
roles in synapse formation. Knockout mice lacking C3
exhibit disrupted development of numerous axonal
tracts, including a complete loss of the anterior commis-
sure and internal capsule (152–156) (FIGURE 8A). C2
appears to be redundant with C3 at many synaptic con-
nections, and dual deletion of both receptors can result
in even more severe axonal pathfinding phenotypes
than those observed in the individual knockouts (157).
C2 and C3 also have important roles in controlling cilio-
genesis, with the joint deletion of the two receptors
resulting in a much more severe phenotype than either
individual knockout (158).

The Drosophila ortholog of ADGRC1-3 is known as
Flamingo, and this receptor exerts extensive cross talk
with Frizzled to control planar cell polarity (PCP) in flies
(159–161). Similar to the defects observed in flies with
Flamingo mutations, mice lacking C1 exhibit a loss of
PCP and severe neural tube defects early in develop-
ment (162). Thus, analogous to Flamingo, C1 is consid-
ered a “core PCP” gene in vertebrates, whereas C2 and
C3 are not considered core PCP genes even though
they also exhibit cross talk with vertebrate Frizzled
receptors (163). The molecular basis of this cross talk is
still under investigation, as are the molecular mecha-
nisms by which C2 and C3 exert their profound effects
on axonal pathfinding and synapse formation. C2 and
C3 are found both pre- and postsynaptically (164) and
can interact in a trans fashion across junctions via the
multiple cadherin-like repeats on their large NTF regions
(165, 166), with ADGRC3, in particular, being essential for
the formation of excitatory synapses in cultured neurons
(164). Homophilic trans interactions (either C1-C1, C2-C2,
or C3-C3) can stimulate the receptors’ signaling activity
(165) and also potentially serve to stabilize associations
with other key proteins involved in the formation of
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FIGURE 7. Adhesion G protein-coupled receptors (AGPCRs) can
couple to multiple signaling pathways with differential effects on
physiology. For example, ADGRB1 (B1) is known to associate with
Tiam1 to stimulate Rac in a G protein-independent manner to pro-
mote dendritic spine growth and development. Conversely, B1 can
also couple with Bcr to stimulate RhoA signaling via a completely
distinct G protein-independent mechanism to inhibit dendritic
growth. Thus, a given AGPCR can engage not only in multiple G pro-
tein-dependent pathways but also in multiple G protein-independ-
ent pathways that can exert differential effects on physiology.
Figure created, with permission, using BioRender.com.
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synapses and other types of cellular junctions (167). In
addition, ADGRC3 can interact via its extracellular do-
main with dystroglycan, with this association being cru-
cial for certain axon guidance decisions (168).

6.2.4. ADGRF subfamily.

Synaptamide (N-docosahexaenoylethanolamine) is a
bioactive lipid known to exert several effects on nervous
system physiology, and, as mentioned above, ADGRF1
(GPR110, “F1”) has been identified as a receptor for this
bioactive lipid (80). Synaptamide is so named because it
can promote synaptogenesis in cultured neurons, but
this effect is lost in neurons lacking F1; moreover, in vivo
deletion of F1 from mice results in significant memory
deficits (80). Another effect of synaptamide that is lost in
F1-knockout mice is the ability of this lipid to attenuate
brain inflammation following injection of mice with lipo-
polysaccharide (LPS) (169). An additional in vivo action of
synaptamide is the promotion of recovery from nerve
injury, and genetic deletion of F1 also blocks this effect
(170). Interestingly, synaptamide has been reported to
bind to the F1 GAIN domain (81), thereby raising the inter-
esting question of whether other AGPCRs beyond F1
may bind via their GAIN domains to either synaptamide
or related bioactive lipids.

6.2.5. ADGRG subfamily.

ADGRG1 (GPR56, “G1”) plays an essential role in nervous
system development that is distinct from the roles

played by the various members of the ADGRL, ADGRB,
ADGRC, and ADGRF subfamilies. G1 is expressed at
high levels in neural progenitor cells (NPCs) (171, 172),
and deletion of this receptor in mice causes the
improper targeting of NPCs during early brain develop-
ment, resulting in a cobblestone malformation of the cer-
ebral cortex (173). G1 expression is lost in most
differentiated cells in the central nervous system (CNS)
but retained in oligodendrocyte precursor cells (OPCs),
with loss of G1 function resulting in reduced numbers of
mature oligodendrocytes and striking deficits in myelina-
tion in both mice (174, 175) and zebrafish (176). G1 is also
expressed in Schwann cells, the myelin-producing cells
of the peripheral nervous system, and loss of G1 function
in zebrafish results in decreased myelination of periph-
eral nerves (177).

G1 exerts its profound actions on brain development
and myelination via interaction with several key extracel-
lular binding partners, including transglutaminase-2 (178,
179) and collagen III (180). Transglutaminase-2 released
from microglia has been shown to interact with G1 on
the surface of OPCs in a manner essential for the afore-
mentioned effects of G1 on myelination (181), with these
studies providing an intriguing example of glia-to-glia
signaling. The physiological importance of the G1-colla-
gen III interaction is suggested by observations that
mice lacking collagen III exhibit a cobblestone malfor-
mation of the cerebral cortex that is nearly identical to
the phenotype observed in mice lacking G1 (182). In
addition to recognition of transglutaminase-2 and col-
lagen III, one further way that ADGRG1 regulates brain
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development is via its expression in microglia, where
it facilitates microglial recognition of exposed phos-
phatidylserine on synaptic processes to mediate syn-
aptic pruning (183).
Like ADGRG1, the related ADGRG6 (GPR126, “G6”)

can also regulate peripheral myelination, as shown in
studies in both zebrafish (184) and mice (185). G6 modu-
lates cyclic AMP levels in Schwann cells to control the
migration and myelination activity of these cells (186). In
addition to its role in development, G6 expression is
maintained in adult Schwann cells, where the receptor
promotes peripheral nerve regeneration after injury (187,
188).
G6 has several extracellular binding partners that

are important in determining the receptor’s physiolog-
ical actions. These binding partners include collagen
IV (189), lamin-211 (77), and the cellular prion protein
PrPC (190). The receptor’s interaction with lamin-211
has been shown to influence G6-mediated cyclic AMP
signaling and to be important for the aforementioned
ability of G6 to control Schwann cell myelination activ-
ity (77). PrPC can also promote G6-mediated cyclic
AMP signaling to enhance G6-dependent myelination
of peripheral nerves (190). Knockout mice lacking PrPC

exhibit late-onset peripheral neuropathy and demye-
lination (190), suggesting that the G6-PrPC interaction
may be a key determinant of peripheral myelin main-
tenance in vivo.

6.3. Cardiopulmonary and Cardiovascular
Systems

6.3.1. ADGRG subfamily.

ADGRG6 (GPR126), which as discussed in sect. 6.2.5
plays an essential role in peripheral nerve myelination,
is also critically important for cardiac development. Mice
and zebrafish that lack G6 expression exhibit severe
abnormalities in the development of the heart, including
a pronounced thinning of the myocardial wall (191, 192).
Intriguingly, this cardiac phenotype can be rescued in
zebrafish by expression of just the NTF region of G6; in
contrast, expression of the G6 NTF was not found to res-
cue the peripheral nerve myelination deficits of zebra-
fish lacking G6 (192). These findings suggest that G6
signaling is necessary for the receptor’s effects on mye-
lination but not its regulation of cardiac development,
thereby providing a fascinating example of how the NTF
and CTF domains of AGPCRs can have distinct physio-
logical functions (FIGURE 9).

ADGRG1 (GPR56) is a close relative of G6 that is not
known to affect the heart but has been shown to exert
powerful regulation over hemostasis. G1 is highly
expressed in platelets, which play a key role in blood
clotting, and mice lacking G1 exhibit delayed platelet
responses and prolonged bleeding (193). Platelet inter-
actions with collagens are known to be crucial for clot
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FIGURE 9. Some adhesion G protein-coupled receptor (AGPCR) physiological effects are entirely due to the NH2-terminal fragment (NTF), whereas
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formation, and the aforementioned interaction of the G1
NTF region with collagen III (180) allows G1 on platelets
to act as a sensor of shear force, activating platelet sig-
naling pathways that contribute to hemostasis (193).

6.3.2. ADGRL subfamily.

As mentioned above, genetic deletion of ADGRL2
(Latrophilin-2, “L2”) results in embryonic lethality (130).
This phenotype can be explained, at least in part, by the
fact that L2 is highly expressed in the heart (both myo-
cardium and endothelium) and plays a role in the epithe-
lial-mesenchymal transition (EMT) (194). L2 effects on
cardiac development begin very early, as expression of
the receptor is turned on during the differentiation of
pluripotent stem cells into cardiac progenitor cells (195,
196) (FIGURE 8B). Indeed, genetic deletion of L2 pre-
vents pluripotent stem cells from expressing any car-
diac-specific genes whatsoever (196).

Another member of the ADGRL subfamily that is
expressed in the heart is ADGRL4 (ELTD1, “L4”). Deletion
of this receptor from mice results in aggravated cardiac
hypertrophy and thickening of the heart’s ventricular
walls in response to pressure overload (197). Double
knockout of both L4 and another AGPCR, ADGRF5 (dis-
cussed further in sect. 6.3.3), results in an even more
dramatic phenotype characterized by malformations of
the aortic arch arteries and perinatal lethality in most of
the double-knockout mice (198).

6.3.3. ADGRF subfamily.

As mentioned in sect. 6.3.2, ADGRF5 (GPR116, “F5”) is
expressed in the heart and can influence cardiac

development (198). However, the highest expression
of F5 is in the lung, where it plays a crucial role in lung
surfactant homeostasis (199–201) (FIGURE 10A). In
addition to disrupted surfactant function, F5-knockout
mice also display emphysema-like symptoms associ-
ated with an abnormal accumulation of alveolar mac-
rophages (202, 203). The effects of F5 on pulmonary
function are primarily due to G protein-dependent sig-
naling by the receptor through Gaq/11; indeed, genetic
deletion of Gaq and Ga11 phenocopies the effects of
ADGRF5 knockout on lung surfactant homeostasis
(204).

6.3.4. ADGRA subfamily.

ADGRA2 (GPR124, “A2”) is highly expressed in the en-
dothelium, and genetic deletion of A2 from mice results
in a particularly dramatic disruption of angiogenesis in
the brain marked by a complete loss of angiogenic
sprouting into the neural tube and failure to establish
the blood-brain barrier (205–208). A2 (and family mem-
ber A3) is a necessary coactivator of the secreted ligand
Wnt7 and works in concert with Frizzled receptors to
mediate the effects of Wnt7 on angiogenesis (209, 210).
This intriguing AGPCR-Frizzled cross talk involving A2 is
reminiscent of the cross talk observed in Drosophila
between Flamingo and Frizzled (159).

Further studies on A2 have shed light on how this
receptor exerts its effects on vascular physiology.
Mechanistic studies have revealed that the receptor’s
regulation of brain angiogenesis requires the interaction
of the A2 NTF with the GPI-anchored extracellular pro-
tein RECK (211–216) (FIGURE 8C) as well as the interac-
tion of the A2 CTF with cytoplasmic proteins from the
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Dishevelled (214), intersectin, and ELMO/DOCK families
(217). ADGRA2 interactions with integrins also con-
tribute to the receptor’s regulation of angiogenesis
(218). Experiments with conditional A2-knockout
mice have demonstrated that loss of A2 from endo-
thelial cells in adulthood results in disruption of the
blood-brain barrier, revealing that the effects of A2
are not just essential in development but also con-
tinue to be important in the adult (219). Like A2,
ADGRA1 (GPR123, “A1”) is highly expressed in the
central nervous system, although A1 is expressed in
neurons rather than endothelial cells and influences
energy expenditure and thermogenesis rather than
regulating the blood-brain barrier (220).

6.4. Other Systems

6.4.1. ADGRG subfamily.

In addition to the physiological roles described above
for ADGRG1 (GPR56, “G1”) in the immune, nervous,
and cardiovascular systems, this receptor has also
been shown to play important roles in the pancreas
and skeletal muscle. G1 is one of the most abundantly
expressed GPCRs in pancreatic islets (221). Moreover,
the G1 ligand collagen III stimulates pancreatic beta
cell signaling pathways, promotes beta cell survival,
and potentiates glucose-induced insulin secretion in a
manner that is dependent on stimulation of G1 (221,
222). In muscle tissue, G1 promotes myoblast fusion
(223) and regulates mechanical overload-induced
muscle hypertrophy (224) in a manner dependent on
interaction with the G1 ligand transglutaminase-2
(225).

ADGRG2 is most highly expressed in the epididy-
mis, where it exerts striking effects on physiology
(FIGURE 10B). Male G2-knockout mice are infertile,
exhibiting a buildup of fluid in the testis that perturbs
normal sperm movement (226). G2 is specifically
expressed in epididymal cell types that are known to
be involved in fluid reabsorption (227), and in these
cells G2 regulates the expression of several key epi-
didymal genes (228). G2 also directly regulates ion
flow via G protein-mediated signaling and arrestin-
mediated complex formation with ion channels (43).
Another cell type that exhibits significant G2 expres-
sion is the adipocyte, where the receptor has been
found to regulate metabolism (229). In contrast, the
related G6 was found in this same study to regulate
adipocyte differentiation (229). G7 is highly expressed
in intestinal tissues and has recently been shown to
bind to the ELMO family of proteins (230), although
the relevance of this interaction for gastrointestinal
physiology remains to be explored.

6.4.2. ADGRB subfamily.

Like ADGRG1, ADGRB1 (BAI1, “B1”) (54) and ADGRB3
(BAI3, “B3”) (53, 231) are expressed in muscle tissue and
promote myoblast fusion. B1 is especially highly exp-
ressed in cells of the Myo/Nog lineage, which are defined
by coexpression of the skeletal muscle-specific transcrip-
tion factor MyoD and the secreted protein Noggin (232).
The regulation of myoblast fusion by B1 and B3, similar to
some of the aforementioned actions of these receptors in
the immune and nervous systems, is dependent on the
interaction of the receptors’ CTF regions with ELMO/
DOCK proteins (53, 54). Interestingly, B1 and B3 are both
essential for normal myoblast fusion and cannot function-
ally substitute for each other (53, 54), revealing that the
receptors exert unique and nonredundant effects on myo-
blast physiology.

6.4.3. ADGRF subfamily.

Mice with adipose-specific deletion of ADGRF5 exhibit
marked glucose intolerance and insulin resistance,
revealing an important role for this receptor in the physi-
ology of adipose tissue (233). More recent work has
shown that F5 binds to the secreted hepatokine FNDC4
and mediates the ability of FNDC4 to promote insulin
signaling and insulin-mediated glucose uptake in white
adipocytes (234). The insulin-sensitizing effects of
FNDC4 are due to its ability to stimulate F5 coupling to
Gas and promote downstream signaling through the
cyclic AMP pathway (234). Beyond F5, there are several
other AGPCRs that have recently been shown to be
robustly expressed in various adipose cell types (229),
and thus future studies in this area may reveal other fas-
cinating examples of AGPCR regulation of adipose tis-
sue physiology.

As mentioned above, mice lacking ADGRF5 exhibit
cardiac defects, especially when ADGRL4 is also
deleted, and it should be pointed out that these mice
also exhibit defects in kidney function, notably the de-
velopment of glomerular thrombotic microangiopathy
(198). More recent studies have demonstrated high
expression of F5 in the specialized acid-secreting A-
intercalated cells (A-ICs) of the kidney (235). Moreover,
F5-knockout mice exhibit a profound dysregulation of A-
IC regulation of urine and blood pH (235).
Although F5 has been found to exert important physi-

ological actions in lung, heart, adipose tissue, and kid-
ney, as described above, the physiological importance
of the related F4 has remained more elusive. However,
recent studies have demonstrated that F4 is highly exp-
ressed in ameloblasts, the cell type that deposits enamel
during tooth development (236). Indeed, genetic deletion
of F4 from mice results in a dramatic hypomineralization of
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tooth enamel due to the dysregulation of the expression of
certain genes, such as carbonic anhydrase 6, that are
known to be crucially important for tooth enamel mineraliza-
tion (236).

7. PATHOPHYSIOLOGY OF ADHESION GPCRs

The clinical relevance of adhesion GPCRs is clear, given
that mutation and/or dysfunction of many members
of this family have been shown to underlie human disease.
The frequent involvement of AGPCRs in pathophysiology
contributes to the attractiveness of these receptors as ther-
apeutic targets for treating disease and enhancing human
health. In this section, we discuss the connections bet-
ween various AGPCRs and human disorders.

7.1. ADGRV Subfamily

The first AGPCR to be recognized as a human disease
gene was ADGRV1 (VLGR1 or “V1”). Mutations in V1 were
found to be responsible for Usher syndrome type 2C
(USH2C) (237). Usher syndrome is the most common
cause of combined deafness and blindness, and there
are multiple types of Usher syndrome caused by muta-
tions to different genes. USH2C, which is caused by V1
mutations, is characterized by severe hearing loss and
late-onset retinitis pigmentosa (237). The deaf-blindness
that characterizes this condition is related to the tissue
distribution of VLGR1, as the receptor is expressed at
high levels in the stereocilia of the cochlea as well as in

the ciliary membrane of visual photoreceptors (238,
239) (FIGURE 11A). Interestingly, V1 has been found to
form a physical complex in stereocilia with the cytoplas-
mic scaffold protein harmonin, which is the product of
the Usher syndrome type 1C gene (47), and the actin-
binding protein myosin VIIA, which is the product of the
Usher syndrome type 1B gene (240), thereby demon-
strating physical complex formation between these
three Usher syndrome gene products.

The various ADGRV1 mutations that cause Usher syn-
drome are located throughout the receptor’s domains.
The majority of the pathological mutations are found on
the receptor’s massive extracellular NH2 terminus, which
is >5,000 amino acids in length (237). For example, a
mutation in the ADGRV1 gene that truncates the recep-
tor’s NTF results in an autosomal-recessive, sound-
induced seizure phenotype in the Frings mouse (241).
However, some human-linked mutations are found on
the V1 cytoplasmic regions, where they disrupt the recep-
tor’s interactions with key scaffold proteins and alter its
coupling to G proteins (242). As mentioned above, there
is recent evidence that ADGRV1 can act as a mechano-
sensor (78). Given that the primary job of cochlear hair
cells is to detect auditory vibrations to mediate the sense
of hearing, these observations of a mechanosensory role
for V1 may shed light on the physiological role of V1 in
hair cells that, when disrupted, leads to deafness.

7.2. ADGRG Subfamily

Alongside the link between ADGRV1 and Usher syn-
drome, the other most intensively studied connection

A B CADGRV1 in USH2C ADGRG1 in BFPP ADGRE5 in glioblastoma

Mutated ADGRV1

Disrupted whirlin processing

Blindness & Deafness

OPCs

NPCs

Mutated ADGRG1

G12/13

Disrupted RhoA signaling

Short isoform
ADGRE5

Glioblastoma migration
and proliferation

Disrupted cortical development
and myelination

FIGURE 11. Adhesion G protein-coupled receptors (AGPCRs) can drive pathophysiology. A: mutations in ADGRV1 are associated with the develop-
ment of Usher syndrome type 2C (USH2C). Dysfunction of this receptor can lead to deafness and blindness due to disrupted whirlin processing. B:
mutations of ADGRG1 perturb RhoA signaling and cause bilateral frontoparietal polymicrogyria (BFPP), which is characterized by disrupted cortical de-
velopment due to dysregulated neural progenitor cells (NPCs) and disrupted myelination due to altered activity of oligodendrocyte precursor cells
(OPCs). C: ADGRE5 is upregulated in glioblastoma and associated with increased tumor invasiveness. Figure created, with permission, using
BioRender.com.
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between AGPCRs and human disease is the observation
that mutations to ADGRG1 (GPR56, “G1”) cause bilateral
frontoparietal polymicrogyria (BFPP) (23, 171). BFPP is
characterized by dysregulation of the wiring of the cere-
bral cortex and myelination deficits, with these clinical
observations fitting well with the aforementioned studies
in animal models revealing key roles for G1 in neural pro-
genitor cell migration (173) and oligodendrocyte devel-
opment (174) (FIGURE 11B). The G1 mutations that lead
to BFPP exert various effects on the receptor’s function,
including perturbation of receptor trafficking, signaling,
and/or interaction with collagen III (243–248). Heparin
is another extracellular ligand for G1 that exhibits
altered binding to BFPP-associated G1 mutants (249).
Additionally, G1 binding of the secreted peptide pro-
gastrin in colonic stem cells has been linked to colo-
rectal carcinogenesis, thus marking G1 as a target for
the treatment of this disorder as well (250).

Gene variants in another member of the ADGRG sub-
family, ADGRG6 (GPR126, “G6”), have been shown to
strongly contribute to the development of adolescent id-
iopathic scoliosis (AIS) (251, 252). G6 is highly expressed
in cartilage, and zebrafish studies have demonstrated
that genetic deletion of G6 leads to delayed ossification
of the developing spine (251) in addition to the myelina-
tion (184) and cardiac (192) phenotypes described ear-
lier. AIS is a polygenic disorder, and thus ADGRG6
variants do not entirely dictate the pathology as in the
cases described above for ADGRV1/USH2C or ADGRG1/
BFPP, but nonetheless the connection of AIS to G6 func-
tion has led to a better understanding of the disorder
and new ideas for therapeutic approaches (253).
Members of the ADGRG subfamily have also been

linked to human cancers. For example, G1 is overex-
pressed in gliomas and regulates glioma cell attach-
ment, migration, mesenchymal differentiation, and radio-
resistance (254–256). In contrast, G1 is downregulated
in metastatic melanoma and exerts effects on melanoma
growth, migration, and angiogenesis (178, 257–260). G1
has additionally been identified as an important marker
for leukemic stem cells in acute myeloid leukemia (AML)
(261–263), and G1 deletion/knockdown has been found
to greatly delay AML development in mouse models
(261, 264). In terms of other members of the subfamily,
G2 is overexpressed in Ewing’s sarcoma (265) and para-
thyroid tumors (38), whereas G6 is overexpressed in
colorectal cancer, where it promotes the growth of colo-
rectal cancer cells (266).

7.3. ADGRB Subfamily

Consistent with the aforementioned important roles of
the ADGRB subfamily in the brain (267, 268), genetic
variation in these receptors has been linked to various

psychiatric and neurological disorders. For example, B3
variants or changes in copy number have been linked in
genetic studies to intellectual disability, cerebellar atro-
phy, and schizophrenia (269–272). Similarly, a B2 vari-
ant that encodes a receptor with increased constitutive
signaling activity has been linked in genetic analyses to
a rare neurodegenerative condition marked by severe
spinal cord atrophy (17).

ADGRB receptors have also been implicated in
human cancers. In glioblastoma, B1 acts as a tumor sup-
pressor (273, 274), and its expression is lost during glio-
blastoma progression (275) due to epigenetic silencing
(276). Similarly, in medulloblastoma, B1 also exerts a tu-
mor suppressor action and again its expression is lost
due to epigenetic silencing during cancer progression
(277–279).

7.4. ADGRD Subfamily

Unlike ADGRB1, which as mentioned above is downre-
gulated in glioblastoma, ADGRD1 (GPR133, “D1”) is mark-
edly upregulated in glioblastoma and promotes glio-
blastoma growth (280). Cleavage of the GAIN domain
and dissociation of the NTF-CTF complex are essential
for the regulation of glioblastoma signaling by D1 (281).
Interestingly, D1 is most highly expressed in the hypoxic
regions of glioblastoma tumors, where it promotes the
survival of tumor cells under conditions of hypoxia (282).
The observation that ADGRD1 is expressed at high lev-
els in glioblastoma without being detectably expressed
in normal brain tissue makes this receptor an attractive
target for novel therapeutics aimed at treating glioblas-
toma (282).

7.5. ADGRE Subfamily

Another AGPCR that is overexpressed in glioblastoma
and has been shown in multiple studies to promote the
invasiveness of glioblastoma cells is ADGRE5 (283–
286) (FIGURE 11C). Similarly, E5 is also upregulated in
other types of cancer beyond glioblastoma and has
been demonstrated to promote the invasiveness of
many of these cancer types (62, 287–291). Interestingly,
E5 can also facilitate platelet interactions with tumors to
promote metastasis (292).

In terms of other connections between ADGRE sub-
family members and human disease, a missense muta-
tion in ADGRE2 has been associated in multiple families
with vibratory urticaria, a condition marked by hives in
response to dermal vibration (293, 294). Interestingly,
this disease-linked mutation in the E2 GAIN domain was
found to promote dissociation of the receptor’s NTF and
CTF regions in response to vibration (293). Thus, the
mutant receptor was hypersensitive to mechanical
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stimuli, leading to sensitization of mast cells (which
express high levels of ADGRE2) to vibration-induced
degranulation and likely accounting for the skin pa-
thology in the affected families. These findings dem-
onstrate the clinical utility of prior basic research,
discussed above, that shed light on both the mecha-
nisms of AGPCR signaling (64, 74) and the ability of
AGPCRs to serve as mechanosensors (295).

7.6. ADGRC Subfamily

ADGRC1–3 (Celsr1–3, “C1–3”) are most abundantly
expressed in the nervous system and have been
linked to several nervous system disorders in humans.
Notably, ADGRC1 mutations or copy number variations
have been linked to human neural tube defects,
including craniorachischisis and spina bifida (296–
299). These clinical reports are consistent with the
aforementioned studies in animal models demonstrat-
ing an essential role for C1 in neural tube development
(162). Additionally, C1 has recently been linked to neu-
roprotection after cerebral ischemic injury through the
promotion of Wnt/PKC signaling (300). In contrast,
human mutations in ADGRC2 have been linked to the
ciliopathy known as Joubert syndrome (301–303),
which makes sense given that animal studies have
revealed a major role for C2 in the control of ciliogen-
esis, as described above (158). ADGRC3 has several
connections to pathophysiology, as its expression has
been associated with hepatocarcinogenesis (304),
and moreover C3 de novo and copy number variants
have been strongly associated with Tourette disorder
(305, 306), an observation that has generated interest
given how few genes have been convincingly linked
to Tourette disorder at this point despite intense
research interest in this area.

7.7. ADGRF Subfamily

Several members of the ADGRF family have been
shown to play significant roles in cancer development
and progression. ADGRF1 (GPR110, “F1”) is overex-
pressed in several different human cancers (307, 308)
including glioma (309), breast cancer (310), osteosar-
coma (311), and lung cancer (312). In both glioma and
breast cancer cells, knockdown of F1 was shown to
reduce the cells’ invasiveness (308, 310), whereas in
lung cancer cells F1 was found to accelerate proliferation
and migration (312). Similarly, knockdown of the related
ADGRF5 in breast cancer cells was found to suppress
migration and invasion, and knockdown of F5 in vivo
was observed to markedly reduce breast cancer metas-
tasis in two mammary tumor metastasis mouse models
(313).

7.8. ADGRL Subfamily

As mentioned above, the members of the ADGRL
subfamily (Latrophilin 1–3, “L1–3”) have been demon-
strated in animal studies to control the wiring of spe-
cific synaptic connections in the brain, and, in a
related vein, these receptors have also been linked
in genetic studies to various nervous system disor-
ders. For example, ADGRL3 variants have been con-
nected in multiple large-scale studies to enhanced
risk of developing attention deficit hyperactivity dis-
order (ADHD) (314–320). In contrast, variants in
ADGRL2 have been associated with microcephaly
(321) and cocaine use disorder (322).

With regard to human cancers, the member of the
ADGRL subfamily that has been studied most inten-
sively is ADGRL4 (ELTD1, “L4”). This receptor has
been found to be overexpressed in gliomas (323)
and to regulate glioma cell proliferation and migra-
tion (324). Further analyses have demonstrated that
L4 is also overexpressed in several other types of
cancer beyond glioma and powerfully promotes
angiogenesis to facilitate cancer growth (325).

7.9. ADGRA Subfamily

As mentioned in sect. 6.3.4, another AGPCR that is
known to exert dramatic effects on angiogenesis is
ADGRA2 (GPR124, “A2”) (205–207, 326, 327). Given
these proangiogenic actions in normal physiology, it is
not surprising that A2 has also been shown to play a
role in cancer development. In fact, the receptor was
originally identified as a cell surface marker for tumor
endothelial cells, and therefore dubbed “tumor endo-
thelial marker 5” or “TEM5” (328, 329). Subsequent
work has demonstrated that ADGRA2 is overex-
pressed in several cancer cell types, including urothe-
lial carcinoma (330) and lung adenocarcinoma (331).
Moreover, A2 was recently shown to promote glio-
blastoma cell proliferation via mechanisms that go
beyond the promotion of angiogenesis (332).

8. CONCLUDING THOUGHTS

The adhesion GPCRs are a diverse and fascinating
family of receptors that play crucial roles in many dif-
ferent physiological processes. The importance of
these receptors in human physiology is highlighted
by the large number of clinical disorders that are
associated with AGPCR dysfunction. The past dec-
ade has seen an explosion of interest in AGPCRs as
well as a wide expansion in their perceived function.
Early work on AGPCRs focused mainly on the ability
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of these receptors to mediate adhesion, but the
emerging view is that AGPCRs serve as large-scale
signaling platforms that integrate and interpret multi-
ple types of stimuli, including adhesive, mechano-
sensory, and chemical signals.
This paradigm shift raises many interesting questions.

For example, in the case of AGPCRs that can be acti-
vated both by small-molecule ligands and mechanosen-
sory forces, how exactly are these signals integrated to
determine receptor activation state? Should one of
these signals be viewed as the “orthosteric” agonist
controlling receptor activity, with the other(s) considered
as “allosteric” modulation? Or will a completely different
model be required to understand the pleiotropic nature
of AGPCR signaling?
Another set of mysteries driving future research in

this area relates to the AGPCR GAIN domains. What is
the physiological significance of GAIN domain auto-
proteolysis? Despite a decade of intense research in
this area, including crystal structures of multiple GAIN
domains and numerous studies on AGPCRs harboring
mutant GAIN domains deficient in self-cleavage, there
is still no definitive answer to this question. Do the
NTF and CTF fragments of AGPCRs usually dissociate
during receptor activation, or is it more typical for
ligands (and/or mechanosensory forces) to merely al-
ter the conformations of the two associated fragments
to initiate receptor signaling? Future studies, including
the elucidation of cryo-EM structures of active versus
inactive AGPCRs, will likely provide critical insights
into the structural changes that underlie AGPCR acti-
vation and the importance of GAIN domain autopro-
teolysis for this process.
Finally, further work in this emerging area will

undoubtedly reveal many additional physiological
roles for AGPCRs and also lead to new therapeutic
approaches for targeting these receptors. The rela-
tively limited number of small-molecule ligands cur-
rently known for AGPCRs (15, 32, 33, 35, 81–83)
seems destined to expand dramatically in the coming
years into a much more extensive armamentarium,
which will create novel tools to facilitate research in
this area while also providing exciting new avenues
for the treatment of human disease.
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