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The tyrosine phosphatase PTPN13/
FAP-1 links calpain-2, TBI and tau 
tyrosine phosphorylation
Yubin Wang1, Randy A. Hall3, Moses Lee1, Andysheh Kamgar-parsi1, Xiaoning Bi2 &  
Michel Baudry1

Traumatic brain injury (TBI) increases the risk of Alzheimer’s disease (AD). Calpain activation and tau 
hyperphosphorylation have been implicated in both TBI and AD. However, the link between calpain 
and tau phosphorylation has not been fully identified. We recently discovered that the two major 
calpain isoforms in the brain, calpain-1 and calpain-2, play opposite functions in synaptic plasticity 
and neuronal survival/death, which may be related to their different C-terminal PDZ binding motifs. 
Here, we identify the tyrosine phosphatase PTPN13 as a key PDZ binding partner of calpain-2. PTPN13 
is cleaved by calpain-2, which inactivates its phosphatase activity and generates stable breakdown 
products (P13BPs). We also found that PTPN13 dephosphorylates and inhibits c-Abl. Following TBI, 
calpain-2 activation cleaved PTPN13, activated c-Abl and triggered tau tyrosine phosphorylation. The 
activation of this pathway was responsible for the accumulation of tau oligomers after TBI, as post-TBI 
injection of a calpain-2 selective inhibitor inhibited c-Abl activation and tau oligomer accumulation. 
Thus, the calpain-2-PTPN13-c-Abl pathway provides a direct link between calpain-2 activation and 
abnormal tau aggregation, which may promote tangle formation and accelerate the development of 
AD pathology after repeated concussions or TBI. This study suggests that P13BPs could be potential 
biomarkers to diagnose mTBI or AD.

Tau hyperphosphorylation is a hallmark of several neurological disorders, including Alzheimer’s disease (AD), 
frontotemporal dementia, traumatic brain injury (TBI) and chronic traumatic encephalopathy (CTE)1–3. Many 
protein kinases and phosphatases have been shown to participate in the regulation of the multiple phosphoryl-
ation sites on the tau protein4,5. Among them, several non-receptor tyrosine kinases, such as c-Abl, have been 
identified to regulate tau tyrosine phosphorylation and have been implicated in tau aggregation6–9. However, 
the exact mechanisms relating tau tyrosine phosphorylation to tau pathology have not been elucidated. Calpain 
activation has also been implicated in many of the same disorders, and calpain-mediated p35 to p25 conversion 
and the resulting activation of cyclin-dependent kinase 5 (cdk5) was shown to be involved in tau phosphorylation 
in AD10–14, although this hypothesis has been challenged15. Other links between calpain and tau hyperphospho-
rylation involve calpain-mediated truncation of glycogen synthase kinase 3 beta (GSK-3ß)16,17, dual specificity 
tyrosine phosphorylation-regulated kinase 1A (Dyrk1A)18 and protein phosphatase 2A (PP2A)19. TBI has been 
shown to be a major risk factor for AD20,21, and CTE, resulting from repeated concussions, has been associated 
with tau hyperphosphorylation2,22. However, how TBI results in tau hyperphosphorylation is still not understood.

Over the last few years, our laboratory has focused on understanding the relative roles of two of the major 
calpain isoforms in the brain, calpain-1 and calpain-2 (aka µ-calpain and m-calpain, respectively) in both phys-
iological and pathological conditions (for review, see23). We have shown that these two isoforms are often acti-
vated by the same initial stimulus, although with a different time-course of activation and for different durations. 
Furthermore, we provided evidence that calpain-1 and calpain-2 play opposite functions under both physiolog-
ical and pathological conditions. Thus, calpain-1 is required for the induction of long-term potentiation (LTP) 
in hippocampus and for some forms of learning and memory, while calpain-2 activation limits the magnitude 
of LTP and learning and memory24,25. Calpain-1 activation is neuroprotective through the stimulation of sur-
vival cascades but calpain-2 activation is neurodegenerative26–29. We postulated that these opposite functions of 
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calpain-1 and calpain-2 were the result of the existence of different PDZ domain binding motifs in the C-terminus 
of calpain-1 and calpain-223. PDZ domains are conserved protein-protein interaction modules within multivalent 
scaffold proteins30, and thus the differential association of these 2 calpain isoforms with distinct PDZ domains 
could alter the activity/function of these isoforms by localizing them within different clusters of signaling pro-
teins. In particular, calpain-1 exhibits a type II PDZ binding motif, TMFA, across the majority of vertebrates, 
while calpain-2 exhibits a typical type I PDZ binding domain, FSVL. In this study, we identified a key PDZ bind-
ing partner of calpain-2 to be the tyrosine phosphatase, PTPN13, aka FAP-1, which was previously shown to be 
involved in cell apoptosis31,32. We found that calpain-2 cleaves PTPN13, resulting in the inactivation of its phos-
phatase activity, and the generation of stable breakdown products recognized by PTPN13 antibodies (P13BPs). 
We also found that PTPN13 regulates the phosphorylation/activation of the protein kinase c-Abl, which was 
previously shown to phosphorylate tau at tyrosine 3947,9. Following TBI, calpain-2 cleaves PTPN13, activates 
c-Abl, and stimulates tau tyrosine phosphorylation and tau oligomer formation. Moreover, increased levels of 
P13BPs were found in postmortem brains of AD patients. Thus, calpain-2-mediated truncation of PTPN13 and 
the resulting c-Abl activation provide a link between TBI and tau phosphorylation, which could account for the 
increased risk of AD following TBI.

Results
Identification of PTPN13 as a calpain-2 PDZ binding partner. We prepared the C-termini (CT) of 
calpain-1 and calpain-2 as GST fusion proteins and overlaid them on a PDZ domain array, which has been pre-
viously described33,34. No significant binding to any of the 96 PDZ domains on the array was detected for control 
GST (Fig. S1A) or GST-calpain-1-CT (Fig. S1B). In contrast, several hits were observed for GST-calpain-2-CT 
(Figs 1A and S1C). The strongest interactions of the GST-calpain-2-CT fusion protein were with PDZ domains 3, 
4 and 5 of the tyrosine phosphatase, PTPN13, aka FAP-1 (Fig. 1A,B).

We next performed a series of experiments to assess whether calpain-2 and PTPN13 were associated in neu-
rons and in brain. Brain sections were dually stained with antibodies against calpain-2 and PTPN13 or calpain-1 
and PTPN13 (Fig. 1C). High magnification of cell bodies and dendrites of pyramidal neurons in field CA1 illus-
trated that calpain-2 and PTPN13 co-localize in dendrites of pyramidal neurons to a much larger degree than 
calpain-1 and PTPN13. Quantification of the extent of double localization confirmed that calpain-2 was signifi-
cantly co-localized with PTPN13, relative to calpain-1 (Fig. 1D).

In parallel biochemical studies, we immunoprecipitated PTPN13 from brain homogenates with an antibody 
against PTPN13 under non-denaturing conditions, in order to pull down proteins that might be associated with 
PTPN13. As shown in Fig. 1D, calpain-2 but not calpain-1 was clearly co-immunoprecipitated with PTPN13 
(Fig. 1E). To shed light on the structural determinants of the interaction, we assessed whether a calpain-2 
C-terminal peptide could compete with calpain-2 for binding to PTPN13 in brain homogenates. As shown in 
Fig. 1E and F, the C-terminal calpain-2 peptide dramatically disrupted calpain-2 co-immunoprecipitation with 
PTPN13, an observation consistent with the aforementioned direct binding of GST-calpain-2-CT to the PDZ 
domains of PTPN13 on the PDZ array. These data support the idea that the C-terminus of calpain-2 interacts in 
native brain tissue with one or several of the PDZ domains of PTPN13.

PTPN13 is a calpain-2 selective substrate. Given the proteolytic activity of calpain-2 and its robust 
binding to PTPN13, we assessed whether PTPN13 might be a substrate for calpain-2. Brain homogenates were 
incubated with concentrations of calcium activating either endogenous calpain-1 (low calcium concentration, 
20 µM) or both calpain-1 and calpain-2 (high calcium concentration, 2 mM). After incubation, samples were 
immunoblotted with an antibody against PTPN13, as well as an antibody against spectrin (a known substrate 
for both calpain-1 and calpain-235). As shown in Fig. 2A, incubation with high but not low calcium concen-
trations resulted in PTPN13 cleavage and the appearance of two breakdown products with molecular weights 
of 210 and 170 kDa; this effect was significantly reduced by pre-treatment with a selective calpain-2 inhibitor, 
Z-Leu-Abu-CONH-CH2-C6H3 (3, 5-(OMe)2)24–26,28, referred to as NA101. We previously reported that NA101 
has a Ki of 25 nM against purified calpain-2 versus a Ki of 1.3 µM against calpain-1, indicating that it has a 50-fold 
selectivity for calpain-2 over calpain-126. In contrast, spectrin was cleaved following incubation with both low 
and high calcium concentrations (Fig. 2A). These results suggest that PTPN13 is a relatively selective substrate 
for calpain-2.

Using calpain cleavage site prediction algorithms, we identified two potential cleavage sites in the C-terminus 
of PTPN13: Asn1488-Thr1489 and Thr1965-Ser1966 (Fig. 2B). Cleavage at 1488 and 1965 would generate break-
down products with molecular weights of 170 and 210 kDa, respectively (Fig. 2B), and both fragments would 
contain the epitope recognized by the PTPN13 antibody used in the experiments illustrated in Fig. 2A. Thus, 
the two breakdown products shown in Fig. 2A are likely generated by calpain-2-mediated cleavage of PTPN13 
at positions 1488 and 1965. Interestingly, the site at position 1488 is close to PDZ3 and the site at position 1965 
close to PDZ5 of PTPN13, suggesting that the predicted cleavage sites are located in close proximity to sites where 
calpain-2 can bind to PTPN13 (Figs 1A and 2B).

Calpain-2 activation increases tau tyrosine phosphorylation through a PTPN13/c-Abl path-
way. Three different tyrosine kinases have been implicated in tau tyrosine phosphorylation: fyn, syk and 
c-Abl4. We first determined which of these tyrosine kinases might be directly involved in tau tyrosine phospho-
rylation. COS-1 cells were co-transfected with GFP-tau and each of the kinases separately. As shown in Fig. 3A, 
only fyn and c-Abl increased tau phosphorylation under these conditions. Since PTPN13 is a tyrosine phos-
phatase, we assessed whether PTPN13 could dephosphorylate phospho-tyrosine tau after its phosphorylation 
with c-Abl. For these experiments, we transfected COS-1 cells with GFP-tau, Flag-His-Abl and PTPN13 or a 
mutated form of PTPN13 (D2359A), which partially inactivates PTPN13. PTPN13 resulted in dephosphorylation 
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of phospho-GFP-tau to a much greater extent than mutated PTPN13 (Fig. 3B). When a similar experiment was 
done with fyn instead of c-Abl, PTPN13 did not affect phospho-tyrosine tau levels induced by fyn (Fig. 3C).

While these data suggested that PTPN13 could dephosphorylate phospho-tyrosine tau after its phosphoryl-
ation with c-Abl, the results could be interpreted differently, as for example it could be the case that PTPN13 
dephosphorylates and inactivates phospho-tyrosine-c-Abl, since c-Abl has 2 tyrosine residues, whose phospho-
rylation is required for kinase activity, tyrosine 245 and tyrosine 41236. To test this hypothesis, we determined the 
effects of PTPN13 on phospho-tyrosine c-Abl using two antibodies specific for c-Abl phosphorylated at Tyr245 
or Tyr 412. These experiments revealed that PTPN13 could dephosphorylate c-Abl phosphorylated at Tyr 245, 
although the lack of c-Abl phosphorylated at tyr 412 prevented determination as to whether PTPN13 could also 
dephosphorylate phospho-tyr 412 c-Abl (Fig. 3D).

In addition, co-immunoprecipitation showed that tau, c-Abl and calpain-2 associated with PTPN13 in mouse 
brain homogenates (Fig. 1E). The calpain-2 C-terminal peptide did not inhibit the association of tau and c-Abl 
with PTPN13 (Fig. 1E), indicating that the interaction of tau and c-Abl with PTPN13 does not rely on calpain-2 
C-terminal domain.

While the above results indicated that calpain-2 could cleave PTPN13 and that PTPN13 could dephosphoryl-
ate c-Abl at tyrosine 245, they did not determine whether calpain-2-mediated cleavage of PTPN13 resulted in its 
inactivation and increased tyrosine phosphorylation of c-Abl at tyrosine 245. To address this question, we incu-
bated acute hippocampal slices prepared from neonatal calpain-1 knock-out mice with NMDA and determined 

Figure 1. The C-terminus of calpain-2 binds to the PDZ domains of PTPN13. (A) Overlay of a PDZ domain 
array with the GST-tagged C-terminus of calpain-2 (800 nM). The GST-calpain-2 C-terminus exhibited specific 
binding to several PDZ domains, with PDZ domains 3, 4 and 5 of PTPN13 showing the strongest interactions 
(arrows). This overlay was repeated three times with similar results. (B) Schematic illustration of PTPN13 
domains, including kinase non-catalytic C-lobe (KIND) domain and Four-point-one, ezrin, radixin, moesin 
(FERM) domain at the N-terminus, followed by 5 PDZ domains, and a Protein tyrosine phosphatase (PTP) 
domain at the C-terminus. (C) Co-immunostaining of calpain-2 and PTPN13 or calpain-1 and PTPN13 in 
the dendrites of CA1 pyramidal neurons. Scale bar = 20 µm. (D) Quantification of immunostaining results. 
Calpain-2 and PTPN13 IMF intensity were analyzed and exhibited a higher Pearson’s correlation coefficient, 
as compared to calpain-1 and PTPN13 IMF in CA1. N = 4 (animals). In each animal, 4–6 CA1 regions were 
assessed. ***P < 0.001. Two-tailed t-test. (E) Co-immunoprecipitation of PTPN13 with calpain-2, tau and 
c-Abl in P2 homogenates of mouse brain. Calpain-2 C-terminal peptide (C2CP) was added to the homogenates 
at a final concentration of 10 µM and incubated for 1 h before co-IP. Immunoprecipitation with rabbit IgG was 
performed as a negative control. Full-length blots are presented in Supplementary Figure 2. (F) Quantification 
of Western blots. Application of calpain-2 C-terminal peptide significantly reduced co-IP of PTPN13 with 
calpain-2. Data are means ± SEM of 3 independent experiments. **p < 0.01. Two-tailed t-test.
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the effects of calpain-2 activation on spectrin degradation, PTPN13 levels, and c-Abl tyrosine phosphorylation at 
tyrosine 245 (Fig. 3E,F). We previously used NMDA treatment of neonatal hippocampal slices as a tool to activate 
endogenous calpain and the use of calpain-1 knock-out mice provided for the selective activation of calpain-2 
by NMDA treatment26. Under these conditions, calpain-2 was activated, as spectrin was cleaved to produce the 
typical spectrin breakdown products (SBDPs). Moreover, PTPN13 was cleaved, generating several breakdown 
products, and c-Abl was phosphorylated at tyrosine 245. These effects were significantly blocked when slices were 
incubated in the presence of a calpain inhibitor (calpain inhibitor III). These results reveal that calpain-2 activa-
tion results in PTPN13 cleavage and inactivation, leading to increased c-Abl phosphorylation at tyrosine 245, a 
phosphorylation event that is required for c-Abl activity36.

Enhanced PTPN13 cleavage and c-Abl activation following TBI. We next tested the hypothesis that 
calpain-2 mediated truncation of PTPN13 might take place after TBI, thus providing a potential link between 
calpain-2 activation and tau hyperphosphorylation, which has been shown to be a consequence of TBI and con-
cussion2,3. We recently reported that in the controlled cortical impact model of TBI in wild-type mice calpain-2 
activation was delayed and prolonged and responsible for producing cell death37. We first determined the levels 
of full-length PTPN13, P13BPs, c-Abl, phospho-Tyr245 c-Abl, tau and phospho-tyrosine tau in WT mice after 
TBI using Western Blot (WB) (Fig. 4A,B). P13BPs (170 and 210 kDa), which were identical to those found after 
calpain-2-mediated PTPN13 truncation, were detected in the ipsilateral cortical tissue 6 h after TBI. Spectrin 
truncation was detected as well after TBI. In parallel, increased levels of c-Abl and tau tyrosine phosphorylation 
were observed. Intraperitoneal (i.p.) injection of NA101 (0.3 mg/kg) 1 h after TBI significantly blocked PTPN13 
and spectrin truncation and the increase in c-Abl and tau tyrosine phosphorylation (Fig. 4A,C), suggesting that 
calpain-2 activation is required for those changes after TBI.

We then used immunohistochemistry (IHC) to verify whether phosphorylation of c-Abl at tyrosine 245 was 
increased under these conditions. Levels of phospho-Tyr245 were significantly increased in the area surrounding the 
impact in the ipsilateral cortex of WT mice 6 h after TBI, as compared to 0 h (Fig. 4E,F,H and I). Treatment with NA101 
1 h after TBI markedly reduced TBI-induced increase in tyrosine phospho-c-Abl levels 6 h after TBI (Fig. 4G and I).

To verify that PTPN13 cleavage and tau tyrosine phosphorylation following TBI was mediated by calpain-2 but 
not calpain-1, we tested the levels of full-length PTPN13, P13BPs, tau and phospho-tyrosine tau in calpain-1 KO mice 
after TBI using Western Blot (Fig. 4B and D). PTPN13 cleavage and tau tyrosine phosphorylation were significantly 
increased 6 h after TBI in the ipsilateral cortex of calpain-1 KO mice. The extent of these changes was comparable with 
that found in WT mice (Fig. 4C vs D), suggesting that calpain-1 activation does not participate in these changes.

 Calpain-2 and c-Abl activation contribute to tau oligomer accumulation following TBI. TBI 
triggers the rapid accumulation of tau oligomers in the brain as early as 4 h after TBI38. Tau oligomers play a crit-
ical role in the initiation and spreading of tau pathology39–42. To test whether calpain-2 and c-Abl were involved 
in this process, we injected NA101 or a brain-penetrating c-Abl inhibitor, nilotinib, to WT mice 1 h after TBI, 

Figure 2. Calpain-2 truncates PTPN13, generating stable breakdown products. (A) P2 fractions prepared from 
mouse brain homogenates were treated with 20 µM or 2 mM Ca2+ and incubated for 20 or 60 min at 37 °C. In 
some groups, a calpain-2 selective inhibitor NA101 (200 nM) was added 10 min before Ca2+ treatment. The 
truncation of PTPN13 and spectrin was analyzed using WB. Full-length blots are presented in Supplementary 
Figure 2. (B) Illustration of the two potential calpain cleavage sites on PTPN13 identified by calpain cleavage 
site predictor (SVM RBF prediction model). The cleavage at 1488 is predicted to generate a 170 kDa N-terminal 
fragment and the cleavage at 1965 to generate a 210 kDa N-terminal fragment. These two fragments contain the 
epitope of PTPN13 antibody (aa1279–1883, as indicated in the antibody manual) used in the WB of panel A 
and should be detected by this antibody. According to our result, the actual epitope of this antibody should be 
within aa1279–1488.
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Figure 3. Calpain-2 mediated cleavage of PTPN13 regulates tyrosine phosphorylation of c-Abl and tau. 
(A) Cos-1 cells were transfected with GFP-Tau and c-Fyn (lane 1), GFP-Tau and Flag-SYK (lane 2) or GFP-
Tau plus Flag-His-c-Abl (lane 3). GFP-Tau was immunoprecipitated using anti-GFP antibody. Tyrosine 
phosphorylation of GFP-Tau was examined using anti-phosphotyrosine antibody. Full-length blots are 
presented in Supplementary Figure 2. (B) Cos-1 cells were transfected with GFP-Tau plus Flag-His-Abl (lane 1), 
GFP-Tau plus Flag-His-Abl plus Flag-PTPN13 WT (lane 2) and GFP-Tau plus Flag-His-Abl plus Flag-PTPN13 
D2359A (lane 3). Flag-PTPN13 D2359A is an inactive mutant of PTPN13. GFP-Tau was immunoprecipitated 
by anti-GFP antibody and was precipitated GFP-Tau was analyzed with an anti-phosphotyrosine antibody. 
Full-length blots are presented in Supplementary Figure 2. (C) Cos-1 cells were transfected with GFP-Tau 
plus c-Fyn (lane 1), GFP-Tau plus c-Fyn plus Flag-PTPN13 WT (lane 2) and GFP-Tau plus c-Fyn plus Flag-
PTPN13 D2359A (lane 3). Tyrosine phosphorylation of GFP-Tau was examined. Full-length blots are presented 
in Supplementary Figure 2. (D) Cos-1 cells were transfected with Flag-c-Abl (lane 1), Flag-c-Abl plus Flag-
PTPN13 WT (lane 2) and Flag-c-Abl plus Flag-PTPN13 D2359A (lane 3). Flag-c-Abl was pulled-down using 
anti-Abl antibody. Tyrosine phosphorylation of Abl was examined using anti-phosphotyrosine, phospho-c-Abl 
Tyr245 and phospho-c-Abl Tyr412 antibodies. Full-length blots are presented in Supplementary Figure 2. (E) 
NMDA treatment of acute hippocampal slices from calpain-1 KO mice at postnatal day 10. Slices were treated 
with 10 µM NMDA at 37 °C for 30 min. In one group, slices were pre-treated with a calpain inhibitor (calpain 
inhibitor III, 10 µM) for 10 min before adding NMDA. Levels of indicated proteins in the collected slices were 
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and examined the formation of tau oligomers 24 h after TBI using IHC, ELISA and WB with an antibody that 
specifically recognizes oligomeric Tau (T22). With IHC, levels of tau oligomers were dramatically increased in 
the ipsilateral cortex and hippocampus 24 h after TBI (Fig. 5A and B), a result consistent with a previous report 
in rats38. Both NA101 and nilotinib significantly reduced TBI-induced tau oligomer accumulation in cortex and 
hippocampus (Fig. 5A and B). To verify this result, homogenates of the cortical region adjacent to the lesion 
were prepared following the same treatments, and the ratios of tau oligomers to total tau in homogenates were 
examined by ELISA using T22 and Tau-5 antibodies. As expected these ratios were increased following TBI, and 
the increased were significantly reduced by NA101 or Nilotinib treatment (Fig. 5C). The same homogenates were 
processed for non-reducing SDS-PAGE and tau oligomers were examined by WB using T22 antibodies. In addi-
tion, we also tested the effects of NA101 on the increase in phosphorylation of other sites in the tau protein, tau 
S202/T205, T231 and S416 using phospho-specific antibodies (Fig. 5D and E). Intensities of several tau oligomer 
bands detected by T22, as well as by pS202/T205, pT231 and pS416 antibodies were significantly increased after 
TBI. Increases in levels of T22 and pS202/T205, but not pT231 and pS416 were significantly reduced by NA101 
injection 1 h after TBI. The above results suggest that activation of calpain-2 and c-Abl contributes to the accu-
mulation of tau oligomers in the brain following TBI.

Our results suggested the possible involvement of calpain-2-mediated PTPN13 in AD pathology. Thus, we 
examined whether calpain-2-mediated PTPN13 fragments could be detected in AD brain. Protein samples from 
hippocampus of 4 post-mortem AD patients and 4 age-matched controls were run on Western blots and labeled 
with an anti-PTPN13 antibody. A PTPN13 fragment with a molecular weight of approximately 210 kDa was pres-
ent in hippocampus homogenates from both normal subjects and age-matched AD patients (Fig. 5F). However, 
the ratio of P13BP over full-length PTPN13 was significantly increased in AD patients, as compared to normal 
subjects (Fig. 5G).

Discussion
PTPN13 belongs to the family of protein tyrosine phosphatases (PTP) and has been mostly studied for its role 
in cancer32. PTPN13 is a large protein with a PTP domain toward its C-terminus, five PDZ domains, and a 
four-point-one, ezrin, radixin, moesin (FERM) domain that binds to plasma membrane and cytoskeletal ele-
ments (Fig. 1B). This protein binds and dephosphorylates the Fas receptor, which suggests it participates in  
apoptosis31, but it also regulates the Rho signaling pathway43. Little is known regarding potential roles for PTPN13 
in the brain or in neurons. Our results indicate that PTPN13 is a key PDZ binding partner for calpain-2 in the 
brain. This interaction was first observed using an array of PDZ domain-containing proteins, and confirmed by 
co-localization and co-immunoprecipitation assays. The co-immunoprecipitation assays also confirmed that the 
interaction between PTPN13 and calpain-2 takes place in the C-terminal domain of calpain-2, which contains a 
type I PDZ-binding motif. No interaction was found between PTPN13 and calpain-1, which is consistent with the 
fact that calpain-1 exhibits a type II PDZ-binding motif. Interestingly, calpain-2 cleaves PTPN13 at two locations 
in its C-terminal region, generating two relatively stable N-terminal breakdown products, which were tentatively 
identified at Asn1488-Thr1489 and Thr1965-Ser1966. As no stable C-terminal breakdown products predicted 
to contain the PTP domain were found after cleavage, we postulated that calpain-2-mediated cleavage might 
inactivate the enzyme’s phosphatase activity. This prediction was verified and we further established c-Abl as a 
novel downstream substrate of PTPN13. Our data suggested that c-Abl phosphorylation at Tyr245 would increase 
(and c-Abl activity would therefore be enhanced) following calpain-2-mediated PTPN13 cleavage, and this was 
confirmed in hippocampal slices. C-Abl has recently been associated with both AD and Parkinson’s disease (PD). 
In the case of AD, c-Abl has been shown to phosphorylate tau at tyrosine 394, and this site is phosphorylated in 
human neurofibrillary tangles9. In the case of PD, c-Abl phosphorylates and activates parkin, leading to mito-
chondrial abnormalities and increased oxidative stress44.

We recently found that calpain-2 was activated following TBI, and that this activation plays an important role 
in cell death in the days following TBI37. Results presented here demonstrate that PTPN13 is cleaved by calpain-2 
following TBI, resulting in c-Abl and tau phosphorylation at tyrosine residues. Systemic injection of a selective 
calpain-2 inhibitor, NA101, 1 h after TBI at a dose of 0.3 mg/kg, which we previously showed to significantly pre-
vent calpain-2 activation in the brain25,28, almost completely eliminated c-Abl activation and increased tyrosine 
tau phosphorylation. Moreover, injection of NA101 or of a c-Abl inhibitor, nilotinib, significantly reduced the 
formation of tau oligomers 1 day after TBI, suggesting that the calpain-2 → PTPN13 → c-Abl → tau phosphoryl-
ation pathway is involved in this process. Interestingly, NA101 injection significantly reduced the level of pS202/
T205 after TBI. Levels of pT231 were partially but not significantly reduced by NA101 injection. In contrast, levels 
of pS416 were not affected by NA101. GSK-3ß and cdk5 have been shown to directly phosphorylate tau at S202, 
T205 and T231, while casein kinase 1 (CK1) and protein kinase A (PKA) directly phosphorylate tau at S4164. 
Calpain has been shown to regulate GSK-3ß45 and cdk513, and it is therefore possible that calpain-2 activation 
leads to increased phosphorylation of tau at multiple sites through the regulation of different protein kinases and 
phosphatases. Recently, accumulating evidence has shown that the propagation of tau oligomers plays a critical 
role in the development of tau pathology. Injection of tau oligomers derived from AD brain disrupts memory and 
propagates abnormal aggregation of endogenous tau in WT mice39–42. Further studies need to be done to examine 

analyzed by WB. Lane 1 and 2 are two replicates. Full-length blots are presented in Supplementary Figure 2.  
(F) Quantification of WB. Ratios of P13BPs to full-length PTPN13 and phospho-c-Abl Tyr245 to total c-Abl 
were significantly increased with NMDA treatment. Treatment with CI-III significantly inhibited NMDA-
mediated changes. Data are means ± SEM of 4 independent experiments. *p < 0.05, **p < 0.01. Two-way 
ANOVA followed by Bonferroni test.
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Figure 4. TBI triggers calpain-2 mediated PTPN13 cleavage and tyrosine phosphorylation of c-Abl and tau. 
(A) A calpain-2 selective inhibitor inhibits TBI-triggered PTPN13 cleavage and tyrosine phosphorylation of 
c-Abl and tau. Ipsilateral cortex of WT mice was collected and homogenized 6 h after surgery. C-Abl or tau 
was then immunoprecipitated from homogenates to test its tyrosine phosphorylation. Lane 1, Sham surgery. 
Immunoprecipitation was performed with tau or c-Abl antibody. Lane 2, Controlled cortical impact (CCI). 
Immunoprecipitation was performed with tau or c-Abl antibody. Lane 3, NA101 was injected i.p. 1 h after CCI. 
Immunoprecipitation was performed with tau or c-Abl antibody. Lane 4, Sham surgery. Immunoprecipitation 
was performed with mouse or rabbit IgG as a negative control. Full-length blots are presented in Supplementary 
Figure 2. (B) Ipsilateral cortex of calpain-1 KO mice was collected and homogenized 6 h after CCI or sham 
surgery. PTPN13 and spectrin cleavage and tau tyrosine phosphorylation were analyzed with WB. Lane 1, 
Sham surgery. Immunoprecipitation was performed with tau antibody. Lane 2, CCI. Immunoprecipitation was 
performed with tau antibody. Lane 3, Sham surgery. Immunoprecipitation was performed with mouse IgG as 
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the effect of long-term treatment a with calpain-2 inhibitor on neurofibrillary tangle (NFT) formation after TBI. 
Finally, our results indicate that calpain-2-mediated PTPN13 truncation is enhanced in AD brain, as compared 
to normal age-matched brain.

It is worth discussing how calpain-2 is activated following TBI. Calpain-2 is located at extrasynaptic sites and 
activated only when extrasynaptic glutamate level increases, which occurs predominantly under pathological 
conditions26. We proposed that calpain-2 activation elicited by extrasynaptic NMDAR stimulation is the result 
of the association of NR2B subunit of NMDARs with RasGRF1, which provides a link between extrasynaptic 
NMDARs and ERK activation46. Indeed, we have previously shown that ERK activation directly phosphorylates 
and activates calpain-247. It has also been repeatedly shown that NR2B subunits are enriched in extrasynaptic 
NMDARs48, and that their activation is critical for excitotoxicity49. Thus, this pathway is likely responsible for the 
prolonged activation of calpain-2 upon stimulation of extrasynaptic NMDA receptors following TBI.

All these results are summarized in a schematic diagram shown in Fig. 6. We postulate that calpain-2 activation 
following TBI (and possibly concussion) could lead to PTPN13 truncation, resulting in increased phosphorylation 
of c-Abl and its activation. In turn, c-Abl activation could lead to tau tyrosine phosphorylation and abnormal tau 
aggregation. It is possible that c-Abl activation also induces parkin phosphorylation and mitochondrial abnormal-
ities. Importantly, TBI is a risk factor for both AD and PD, and it will be interesting to determine whether parkin is 
abnormally phosphorylated following TBI in various brain structures. It is also interesting to note that the hallmark 
of chronic traumatic encephalopathy (CTE) is a massive increase in tau phosphorylation50. While there is currently 
no evidence that tau is phosphorylated at tyrosine 396 in CTE brain, it is possible that repeated concussions acti-
vate the calpain-2 → PTPN13 → c-Abl → tau phosphorylation pathway, leading to NFT formation. Furthermore, as 
PTPN13 has previously been shown to participate in apoptosis, it is possible that calpain-2 mediated truncation/
inactivation of PTPN13 is also involved in neuronal apoptosis under various pathological conditions.

It was previously shown that blood levels of a marker of calpain activation, an N-terminal fragment of spectrin 
generated by calpain, were correlated with the pathological outcomes of mild TBI (mTBI)51, and it is therefore 
likely that the pathway described here is also activated by mTBI. Additionally, it is possible that the P13BP(s) 
identified here could be further characterized and could potentially serve as novel blood biomarkers for the diag-
nosis of mTBI or AD. Finally, our results suggest that a selective calpain-2 inhibitor might be beneficial not only 
for the treatment of TBI, but also for preventing the development of CTE following repeated concussions, as well 
as for more chronic neurodegenerative disorders such as AD and PD.

Methods
Animals. Animal use in all experiments followed NIH guidelines and all protocols were approved by the 
Institution Animal Care and Use Committee of Western University of Health Sciences. Calpain-1 KO mice on a 
C57Bl/6 background were obtained from a breeding colony established from breeding pairs generously provided 
by Dr. Chishti (Tufts University). C57Bl/6 mice were purchased from Jackson Labs and were the corresponding 
wild-type (WT).

Materials. DNA Constructs. Flag-PTPN13 were generously provided by Dr. Carl-Henrik Heldin (Uppsala 
University, Sweden). Flag-PTPN13 D2359A was constructed based on Flag-PTPN13 using the QuikChange II 
Site-Directed Mutagenesis Kit (Agilent Technologies). EGFP-Tau (WT human tau containing human four-repeat 
tau lacking the N-terminal sequences (4R0N) and contains exons 1, 4 and 5, 7, and 9–13, intron 13, and exon 14)
(plasmid #46904), c-Fyn (human) (plasmid #16032), Flag-SYK (human)(plasmid #20646) and Flag-His-c-Abl 
(human) (plasmid #52684) were purchased from Addgene. GST-calpain-1 C-terminus and GST-calpain-2 
C-terminus expression plasmids were constructed on pGEX-3x vector.

Antibodies. The primary antibodies used for WB were PTPN13 (1:1000, LS-C148268, LifeSpan BioSciences), 
calpain-1 (1:800, 2556, CST), calpain-2 (1:1000, LS-B12657, LifeSpan BioSciences), tau-5 (1:2000, AHB0042, 
Thermo Fisher Scientific), tau-1 (1:2000, MAB3420, EMD Millipore), anti-Tau oligomer T22 (1:300, ABN454, 
EMD Millipore), phospho-tau Ser202/Thr205 AT8 (1:1000, MN1020, Thermo Fisher), phospho-Tau Thr231 

a negative control. Full-length blots are presented in Supplementary Figure 2. (C) Quantification of WB results 
similar to panel A. The ratios of P13BPs to PTPN13, phospho-tyrosine tau to total tau, and phospho-Tyr245 of 
c-Abl to total c-Abl were significantly increased following CCI. Injection with NA101 significantly inhibited 
those changes following CCI. Data are means ± SEM of 3–5 independent experiments. *p < 0.05, **p < 0.01, 
***p < 0.001. Two-way ANOVA followed by Bonferroni test. (D) Quantification of WB results similar to panel 
B. The ratios of P13BPs to PTPN13, and phospho-tyrosine tau to total tau were significantly increased following 
CCI. Data are means ± SEM of 3 independent experiments. *p < 0.05, **p < 0.01. Two-way ANOVA followed 
by Bonferroni test. (E–G) IHC with a phospho-c-Abl (Tyr245) antibody in coronal brain sections (Bregma 
−0.58 mm) 6 h after TBI. Vehicle (5% DMSO in PBS) or NA101 (0.3 mg/kg) was injected i.p. 1 h after TBI. 
Scale bar in the DAPI images under low-magnification, 500 µm. Scale bar in the zoomed-in images, 100 µm. 
(H) High-magnification images of phospho-c-Abl (Tyr245) staining of cortical neurons in ipsilateral cortex 6 h 
after TBI. Scale bar, 10 µm. (I) Quantification of IHC results. Three coronal brain sections (Bregma −0.58 mm, 
−1.58 mm and −1.94 mm) from each brain were immunostained and IMF intensity analyzed. Changes in 
phospho-Tyr245 level were calculated as the mean fluorescence intensity (MFI) of p-Tyr245 staining in the 
ipsilateral side of the insult subtracted by the MFI of p-Tyr245 staining in the contralateral side. Changes in 
p-Tyr245 in all 3 sections from the same brain were averaged. N = 3–5 (animals). *p < 0.05, **p < 0.01. One-
way ANOVA followed by Bonferroni test.
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Figure 5. Inhibition of calpain-2 or c-Abl attenuates the formation of tau oligomers in brain following TBI. (A) 
IHC with an anti-tau oligomer antibody (T22) in cortical and hippocampal CA1 areas of coronal brain sections 
24 h after TBI or sham surgery. Vehicle (5% DMSO in PBS), NA101 (0.3 mg/kg) or Nilotinib (25 mg/kg) was 
injected i.p. 1 h after TBI. Scale bar = 100 µm. (B) Quantification of IHC results. Three coronal brain sections 
(Bregma −1.58 mm, −1.94 mm and −2.30 mm) from each brain were imaged. MFIs in cortical and CA1 areas 
from each section were measured in ImageJ. N = 3 for Sham, C2I and Nilotinib. N = 5 for Vehicle. **p < 0.01, 
****p < 0.0001 Sham vs. Vehicle, #p < 0.05 C2I vs. Vehicle, ##p < 0.01 Nilotinib vs. Vehicle. Two-way ANOVA 
followed by Bonferroni test. (C) ELISA analysis of brain homogenates using Tau-5 and T22 antibodies 24 h 
after TBI or sham surgery. Vehicle (5% DMSO in PBS), NA101 (0.3 mg/kg) or Nilotinib (25 mg/kg) was injected 
i.p. 1 h after TBI. The ratios of tau oligomers to total tau were analyzed. N = 4 (animals). ***p < 0.001 sham 
vs. vehicle, #p < 0.05 vehicle vs. C2I. ##p < 0.01 vehicle vs. Nilotinib. One-way ANOVA followed by Bonferroni 
test. (D) Levels of Tau monomers and oligomers and Serine/Threonine phosphorylation of tau at S202, T205, 
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AT180 (1:1000, MN1040, Thermo Fisher), phospho-tau Ser416 (1:1000, p1573–416, PhosphoSolutions), c-Abl 
(1:1000, 2862, CST), spectrin (1:1000, MAB1622, EMD Millipore), phosphotyrosine (05–321, EMD Millipore), 
Phospho-c-Abl Tyr245 (1:800, 2861, CST), Phospho-c-Abl Tyr412 (1:800, 2865, CST) and actin (1:10000, A2228, 
Sigma-Aldrich). The secondary antibodies used for WB were IRDye 680RD goat anti-rabbit (1:10000, 926–68071, 
LI-COR) and IRDye 800CW goat anti-mouse (1:10000, 926–32210, LI-COR).

Peptide. The calpain-2 C-terminal peptide was synthesized by ABI Scientific. The sequence is 
TIQLNLASWLSFSVL (mouse calpain-2 C-terminus).

Overlay of PDZ array. Fusion proteins were purified and overlays of the PDZ domain array were performed 
as previously described33,34. Briefly, 1 μg of hexahistidine-tagged PDZ domain fusion proteins were spotted onto 
nitrocellulose, dried overnight, and then overlaid with GST-alone (control), GST-calpain-1-CT, or GST-calpain-
2-CT (800 nM). Membranes were washed three times and incubated with an HRP-coupled anti-GST monoclonal 
antibody (Amersham Pharmacia Biotech) and binding of calpain-1-CT or calpain-2-CT fusion protein was visu-
alized using enhanced chemiluminescence.

Calpain cleavage site prediction. Prediction of calpain cleavage site(s) in PTPN13 was performed using 
the online cleavage site predictor (http://calpain.org/predict.rb?cls=substrate). SVM RBF prediction model was 
used. The query sequence (1000 aa maximum) was aa1001–1999 of PTPN13 [Mus musculus] (NP_035334.2). 
This region was selected because it includes the epitope of PTPN13 antibody LS-C148268 which is aa1279–1883. 
The top three predicted cleavage sites in this region were 1488, 1023 and 1965. The molecular weights (MWs) of 
the fragments generated by the cleavage at 1488 are 170 kDa (N-terminal) and 105 kDa (C-terminal). The MWs of 
the fragments generated by 1023 are 125 kDa (N-terminal) and 150 kDa (C-terminal). The MWs of the fragments 
generated by 1965 are 210 kDa (N-terminal) and 65 kDa (C-terminal). Among them, the 170 kDa fragment gen-
erated by cleavage at 1488 and 210 kDa generated by cleavage at 1965 should be recognized by PTPN13 antibody 
and fit the MWs of the breakdown products detected in WB (Fig. 2A)

Cell lines and transfection. Cos-1 cells (ATCC) were grown in DMEM supplemented with 10% (v/v) fetal 
bovine serum (FBS) (Invitrogen). For transient expression, cells were transfected with the respective DNA con-
structs by Lipofectamine 2000 (Invitrogen).

Controlled cortical impact. CCI model was established in mice following the protocol described in previ-
ous publications52–55. Mice (3-month old, 25–30 g) were anesthetized using isoflurane and fixed in a stereotaxic 
frame with a gas anesthesia mask. A heating pad was placed beneath the body to maintain body temperature 
around 33–35 °C. The head was positioned in the horizontal plane. The top of the skull was exposed, and a 5-mm 
craniotomy was made using a micro drill lateral to the sagittal suture, and centered between Bregma and Lambda. 
The skull at the craniotomy site was carefully removed without damaging the dura. The exposed cortex was hit 
by a pneumatically controlled impactor device (AMS-201, Amscien). The impactor tip diameter was 3 mm, the 
impact velocity was 3 m/sec, and the depth of cortical deformation was 0.5 mm. After the impact, the injured 
region was sutured using tissue adhesive (3 M) and the mice were placed in a 37 °C incubator until they recovered 
from anesthesia. For sham surgery, mice were sutured after craniotomy was performed.

Immunohistochemistry. Mice were anesthetized and perfused intracardially with freshly prepared 4% par-
aformaldehyde in 0.1 M phosphate buffer (PB, pH 7.4). After perfusion, brains were removed and immersed in 
4% paraformaldehyde at 4 °C for post-fixation, then in 15% and 30% sucrose at 4 °C for cryoprotection. Coronal 
frozen sections at indicated positions were prepared. Sections were first blocked in 0.1M PBS containing 5% 
goat or donkey serum and 0.3% Triton X-100 (blocking solution) for 1 h, and then incubated with anti-PTPN13 
(1:200, LS-C148268), anti-calpain-1 (1:400, LS-B4768), anti-calpain-2 (1:200, LS-C337641), Phospho-c-Abl 
Tyr245 (1:200, 2861, CST) and/or anti-Tau oligomer (T22, 1:300, ABN454, EMD Millipore), prepared in block-
ing solution overnight at 4 °C. Sections were washed 3 times in PBS (10 min each) and incubated in Alexa Fluor 
488 goat anti-rabbit IgG and/or Alexa Fluor 594 goat anti-mouse IgG (1:500, Thermo Fisher Scientific) prepared 
in blocking solution for 2 h at room temperature. After three washes, sections were mounted with mounting 
medium containing DAPI (Vector Laboratories).

For analysis of PTPN13 and calpain-1/calpain-2 co-localization, sections were visualized under 100X using a 
confocal (Nikon) and analyzed for co-localization of the CA1 hippocampal region using ImageJ JaCOP plugin56 
and Prism. Before analyzing using the JaCOP plugin, each image’s quality and reduction of background increased 
with noise despeckling, removal of bright pixel outliers with a radius of 2.0 and a threshold of 50, and with a 

T231 and S416 in ipsilateral cortical homogenates collected 24 h after sham (lane 1) or TBI (lane 2) or TBI plus 
NA101 injection (lane 3) were analyzed with WB of non-reducing SDS-PAGE (NuPAGE 4–12% Bis-Tris gel). 
Full-length blots are presented in Supplementary Figure 2. (E) Quantification of tau oligomers (boxed area) as 
detected by WB. N = 3 (animals). ****p < 0.0001 sham vs. TBI. ###p < 0.001 TBI vs. TBI + NA101. Two-way 
ANOVA followed by Bonferroni test. (F) Post-mortem hippocampal samples from 4 AD patients and 4 age-
matched controls (N) were probed with antibodies against PTPN13 and actin in WB. Full-length PTPN13 at 
275 kDa and a P13BP at approximately 210 kDa were detected. (G) Quantification of the Western blots. The 
ratio of P13BP to full-length PTPN13 was significantly higher in AD patients than that in controls. N = 4. 
*p < 0.05. Two-tailed t-test.

http://calpain.org/predict.rb?cls=substrate
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standard increase of gamma (1.25). After which, two images of either PTPN13 and Calpain-2 or PTPN13 and 
Calpain-1 were compared of the same section and area of interest. Criteria looked at for the quantification of 
co-localization was the Pearson’s Coefficient. Image acquisition and quantification were done by two persons in 
a blind fashion.

For quantification of Phospho-c-Abl Tyr245 levels, 3 coronal brain sections at Bregma −0.58 mm, −1.58 mm 
and −1.94 mm of each brain were immunostained and analyzed. In each section, three 637 µm × 637 µm areas 
in both ipsilateral and contralateral sides were imaged using a confocal microscope (Nikon). Mean fluorescence 
intensity (MFI) in each of the three areas was measured in ImageJ and averaged. Then, MFI in the contralateral 
side (background signal) was subtracted from MFI in the ipsilateral side. Data in all three sections from the same 
brain were averaged. Image acquisition and quantification were done by two persons in a blind fashion.

For quantification of Tau oligomers, 3 coronal brain sections at Bregma −1.58 mm, −1.94 mm and −2.30 mm 
of each brain were immunostained and analyzed. In each section, two 424 µm × 424 µm areas in ipsilateral cortex 
and two in ipsilateral CA1 were imaged using a confocal microscope (LSM-880, Zeiss). Mean fluorescence inten-
sity (MFI) in each area was measured in ImageJ. MFIcortex and MFICA1 in three sections from the same brain were 
averaged. Image acquisition and quantification were done by two persons in a blind fashion.

ELISA. Mouse brain was homogenized in ice-cold PBS plus protease inhibitor cocktail (Thermo Fisher 
Scientific). 96-well ELISA plates (Nunc MaxiSorp™) were coated with 15 µg of brain homogenate using 0.05 M 
sodium bicarbonate, pH 9.6 as coating buffer, followed by overnight incubation at 4 °C. The plates were washed 
three times with Tris-buffered saline with 0.01% Tween (TBST), then blocked for 3 h at room temperature with 
10% nonfat dry milk in TBST. The plates were then washed with TBST and incubated with anti-tau oligomer 
(1:500, T22) or anti-tau (1:2000, Tau-5, Abcam) antibody in 5% nonfat milk in TBST for 1 h at room temperature. 
The plates were washed three times with TBST and incubated with goat anti-rabbit IgG Horseradish-peroxidase 
(HRP)(1:3000, Thermo Fisher Scientific) or goat anti-mouse IgG HRP (1:3000) in 5% nonfat milk in TBST for 1 h 
at room temperature. Plates were then washed three times with TBST and developed with 1-Step TMB (Thermo 
Fisher Scientific). The reaction was stopped with 2 M sulfuric acid and the plates were read at 450 nm using a 
POLARstar OMEGA plate reader (BMG Labtech).

Preparation of P2 membranes from brain homogenates. Mouse brain was isolated and placed in 
ice-cold homogenization buffer containing the following: 320 mM sucrose, 10 mM HEPES, pH 7.4, 2 mM EDTA 
and protease and phosphatase inhibitor cocktail (Thermo Fisher Scientific). Brain tissue was homogenized using 
a glass homogenizer. The homogenate was centrifuged at 1000 × g for 10 min, and the resultant supernatant was 
collected and centrifuged at 14,000 × g for 20 min. The resultant pellet (P2 membrane fraction) was centrifuged 
again at 14,000 × g for 20 min to eliminate protease inhibitors. P2 pellets were then resuspended in Tris-acetate 
buffer (100 mM Tris-acetate, pH 7.4, 50 µM EGTA) for Ca2+ treatment or in IP lysis/wash buffer plus protease and 
phosphatase inhibitor cocktail (Thermo Fisher Scientific) for immunoprecipitation.

Immunoprecipitation. Immunoprecipitation was performed using the Pierce Classic IP Kit (26146, Thermo 
Fisher Scientific) following the instruction. The antibodies used for IP were PTPN13 (LS-C148268), normal rab-
bit IgG (2729, CST), GFP (12Ab hybridoma medium, gift from Dr. Steven Standley, Western University of Health 
Sciences), c-Abl (2862, CST), tau (AHB0042) and normal mouse IgG (sc-2025, Santa Cruz Biotechnology).

Acute hippocampal slice preparation and treatment. Calpain-1 KO mice at postnatal day 10 were 
anesthetized with isoflurane and decapitated. Brains were quickly removed and transferred to oxygenated, 
ice-cold cutting medium (in mM): 124 NaCl, 26 NaHCO3, 10 glucose, 3 KCl, 1.25 KH2PO4, 5 MgSO4, and 3.4 

Figure 6. A new link between TBI, calpain-2, tauopathy and AD pathogenesis. TBI triggers calpain-2 activation. 
PTPN13 is cleaved and inactivated. This results in increased tyrosine phosphorylation of c-Abl at tyr245, which 
increases its kinase activity and phosphorylates tau at tyr394. Elevation of tau tyrosine phosphorylation contributes 
to tau oligomer accumulation, which may lead to increased risk of AD or AD-related disease. Administration of a 
calpain-2 selective inhibitor post-TBI reduces TBI-induced calpain-2 activation, tau tyrosine phosphorylation and 
tau oligomer formation, thus may inhibit tauopathy and AD pathogenesis.
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CaCl2. Hippocampal transversal slices (400 μm-thick) were prepared using a McIlwain-type tissue chopper and 
transferred to a recovery chamber with a modified aCSF medium, containing (in mM): 124 NaCl, 2.5 KCl, 2.5 
CaCl2, 1.5 MgSO4, 1.25 NaH2PO4, 24 NaHCO3, 10 D-glucose, and saturated with 95% O2/5% CO2 for 1 h at 37 °C. 
After 1 h recovery, hippocampal slices were then transferred into screw-cap microfuge tubes (2–3 slices each 
tube) containing 2 ml of freshly oxygenated aCSF medium with various drugs and were incubated at 37 °C. At 
the indicated time points, slices were rapidly frozen on dry ice. Slices were then lysed and protein concentrations 
were measured using BCA protein assay kit (Thermo Fisher). Equivalent amounts of proteins were processed for 
SDS-PAGE and western blot.

Statistical analyses. Data are means ± SEM in all figures. To compute p values, unpaired two-tailed 
Student’s t-tests and one- or two-way ANOVA with Bonferroni post-tests were used, as indicated in figure legends.

Data availability. The datasets generated during and/or analyzed during the current study are available from 
the corresponding author upon reasonable request.
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