# Heterodimerization with $\beta_2$ -Adrenergic Receptors Promotes Surface Expression and Functional Activity of $\alpha_{1D}$ -Adrenergic Receptors

Michelle A. Uberti,<sup>1</sup> Chris Hague, Heide Oller, Kenneth P. Minneman, and Randy A. Hall Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia Received October 20, 2004; accepted December 16, 2004

# ABSTRACT

The  $\alpha_{1D}$ -adrenergic receptor ( $\alpha_{1D}$ -AR) is a G protein-coupled receptor (GPCR) that is poorly trafficked to the cell surface and largely nonfunctional when heterologously expressed by itself in a variety of cell types. We screened a library of approximately 30 other group I GPCRs in a quantitative luminometer assay for the ability to promote  $\alpha_{1D}$ -AR cell surface expression. Strikingly, these screens revealed only two receptors capable of inducing robust increases in the amount of  $\alpha_{1D}$ -AR at the cell surface:  $\alpha_{1B}$ -AR and  $\beta_2$ -AR. Confocal imaging confirmed that coexpression with  $\beta_2$ -AR resulted in translocation of  $\alpha_{1D}$ -AR from intracellular sites to the plasma membrane. Additionally, coimmunoprecipitation studies demonstrated that  $\alpha_{1D}$ -AR and  $\beta_2$ -AR specifically interact to form heterodimers when coexpressed in HEK-293 cells. Ligand binding studies revealed an

Adrenergic receptors (ARs) mediate physiological responses to the catecholamines norepinephrine (NE) and epinephrine. ARs are subdivided into three major families ( $\alpha_1$ ,  $\alpha_2$ , and  $\beta$ ) based on their structure, pharmacology, and signaling mechanisms (Hieble et al., 1995). At least three closely related subtypes have been identified within each family, with each subtype differentially expressed in various tissues. ARs are members of the rhodopsin-like group I G protein-coupled or re-

receptor (GPCR) superfamily and exhibit the characteristic

increase in total  $\alpha_{1D}$ -AR binding sites upon coexpression with  $\beta_2$ -AR, but no apparent effect on the pharmacological properties of the receptors. In functional studies, coexpression with  $\beta_2$ -AR significantly enhanced the coupling of  $\alpha_{1D}$ -AR to nore-pinephrine-stimulated Ca<sup>2+</sup> mobilization. Heterodimerization of  $\beta_2$ -AR with  $\alpha_{1D}$ -AR also conferred the ability of  $\alpha_{1D}$ -AR to cointernalize upon  $\beta_2$ -AR agonist stimulation, revealing a novel mechanism by which these different adrenergic receptor sub-types may regulate each other's activity. These findings demonstrate that the selective association of  $\alpha_{1D}$ -AR with other receptors is crucial for receptor surface expression and function and also shed light on a novel mechanism of cross talk between  $\alpha_1$ - and  $\beta_2$ -ARs that is mediated through heterodimerization.

GPCR architecture featuring seven membrane-spanning domains.

Traditionally, GPCRs have been thought to function as monomers, but a significant amount of recent evidence suggests that GPCRs can also exist as dimers consisting of identical or distinct monomeric subunits. Dimerization of GPCRs may alter the receptors' functional, pharmacological, or regulatory properties and, in some cases, may be absolutely required for receptor function (Angers et al., 2002). For example, two nonfunctional GABA<sub>B</sub> receptors seem to form an obligate heterodimer that is necessary for cell surface expression and functional GABA<sub>B</sub> receptor activity (Marshall et al., 1999). Sweet and umami taste receptors also seem to form obligate heterodimers (Zhao et al., 2003). Many GPCRs are known to exhibit poor surface expression and functionality when expressed alone in heterologous cells (Tan et al., 2004), but beyond the examples of GABA<sub>B</sub>

**ABBREVIATIONS:** AR, adrenergic receptor; NE, norepinephrine; GPCR, G protein-coupled receptor; HA, hemagglutinin; GFP, green fluorescent protein; HEK, human embryonic kidney; D $\beta$ M, *n*-dodecyl- $\beta$ -D-maltoside; BMY 7378, 8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro[4.5]decane-7,9-dione dihydrochloride; DMEM, Dulbecco's modified Eagle's medium; BSA, bovine serum albumin; HRP, horseradish peroxidase; ECL, enzyme-linked chemiluminescence; PBS, phosphate-buffered saline; BE, 2-[ $\beta$ -(4-hydroxyphenyl)-ethylaminomethyl]-tetralone; CGP-12177, 4-[3-[(1,1-dimethyethyl)amino]-2-hydroxypropoxy]-1,3-dihydro-2H-benzimidazol-2-one; CGP-20712A, ( $\pm$ )-2-hydroxy-5-[2-[[2-hydroxy-3-[4-[1-methyl-4-(trifluoromethyl)-1H-imidazol-2-yl]phenoxy]propyl]amino]ethoxy]-benzamide methanesulfonate salt; ICI 118,551, ( $\pm$ )-1-[2,3-(dihydro-7-methyl-1H-inden-4-yl)oxy]-3-[(methylethyl)amino-2-butanol.

This work was supported by grants from the National Institutes of Health to R.A.H. and K.P.M., by grants from the American Heart Association to K.P.M and C.H., and by a Distinguished Young Scholar in Medical Research award from the W.M. Keck Foundation to R.A.H.

<sup>&</sup>lt;sup>1</sup> Current address: Synaptic Pharmaceutical Corp., Paramus, NJ.

Article, publication date, and citation information can be found at http://jpet.aspetjournals.org.

doi:10.1124/jpet.104.079541.

The  $\alpha_{1D}$ -AR is a well documented example of a GPCR that is poorly expressed at the cell surface and largely nonfunctional when heterologously expressed alone in most cell types (Theroux et al., 1996; Chalothorn et al., 2002). Interestingly, we have recently found that heterodimerization with the closely related  $\alpha_{1B}$ -AR results in robust surface expression of the normally intracellular  $\alpha_{1D}$ -AR while also increasing  $\alpha_{1D}$ -AR responsiveness to NE and promoting agonist-induced  $\alpha_{1D}$ -AR internalization (Uberti et al., 2003; Hague et al., 2004b). These studies suggested the possibility that heterodimerization with  $\alpha_{1B}$ -AR might be required for  $\alpha_{1D}$ -AR function. However, other recent studies utilizing double  $\alpha_{1A}$ -/ $\alpha_{1B}$ -AR knockout mice have revealed the presence of functional  $\alpha_{1D}$ -AR, even in the absence of other  $\alpha_1$ -AR subtypes (Turnbull et al., 2003). Additionally,  $\alpha_{1D}$ -AR is found in some tissues that lack  $\alpha_{1B}$ -AR expression such as human bladder and specific regions of the spinal cord and brain, as well as certain rat and human blood vessels (Alonso-Llamazares et al., 1995; Michelotti et al., 2000; Tanoue et al., 2002; Sadalge et al., 2003). Thus, it is reasonable to speculate that trafficking of functional  $\alpha_{1D}$ -AR to the cell surface may involve the interaction of  $\alpha_{1D}$ -AR with other proteins beyond  $\alpha_{1B}$ -AR. In the present study, we screened a library of approximately 30 group I GPCRs for possible interacting partners that might be able to traffic  $\alpha_{1D}$ -AR to the cell surface in a functional manner.

### Methods and Materials

Plasmids and Other Materials. Epitope-tagged (Flag- and HAtagged) versions of human  $\alpha_{1A}$ -,  $\alpha_{1B}$ -, and  $\alpha_{1D}$ -AR cDNAs have been described previously (Vicentic et al., 2002; Uberti et al., 2003). Human  $\alpha_{1D}$ -AR C-terminally tagged GFP construct in pEGFP-N3 was kindly provided by Gozoh Tsujimoto (National Children's Hospital, Tokyo, Japan). HA-tagged  $\beta_1$ - and  $\beta_2$ -AR cDNAs were kindly provided by Hitoshi Kurose (Kyushu University, Japan). HA-tagged  $\alpha_{2A}$ -,  $\alpha_{2B}$ -, and  $\alpha_{2C}$ -AR cDNAs were kindly provided by Lee Limbird (Vanderbilt University Medical Center, Nashville, TN). Flag-tagged Dopamine1 and Dopamine2 receptor cDNAs were kindly provided by David Sibley (National Institutes of Health, Bethesda, MD). HAtagged serotonin 5HT1A receptor cDNA was kindly provided by John Raymond (Medical University of South Carolina, Charleston, SC). Flag-tagged angiotensin AT1 and AT2 receptor cDNAs were kindly provided by Victor Dzau (Harvard Medical School, Boston, MA). HA-tagged muscarinic m1-5 acetylcholine receptor cDNAs were kindly provided by Allen Levey (Emory University School of Medicine, Atlanta, GA). HA-tagged opioid receptor cDNAs ( $\mu$  and  $\delta$ ) were kindly provided by Ping-Yee Law (University of Minnesota School of Medicine, Duluth, MN). Flag-tagged lysophosphatidic acid lysophosphatidic acid-1 and -2 receptor cDNAs were kindly provided by Jerold Chun (University of California, San Diego, CA). Flag-tagged histamine H1-3 receptor cDNAs were kindly provided by Rob Leurs (Vrije Universiteit, The Netherlands). HA-tagged melatonin MT1 and Myc-tagged melatonin MT2 receptor cDNAs were kindly provided by Tarfa Kokkola (University of Kuopio, Finland). Flag-tagged melatonin-related receptor cDNA was kindly provided by Peter J. Morgan (Rowett Research Institute, Scotland), and HA-tagged purinergic P2Y1 receptor cDNA was kindly provided by Michael Salter (University of Toronto, Canada). For the screens examining the effects of receptor coexpression on  $\alpha_{1D}$ -AR surface expression, HA- $\alpha_{1D}$ -AR was utilized in cases where the coexpressed receptor was Flag-tagged, whereas Flag- $\alpha_{1D}$ -AR was utilized in cases where the coexpressed receptor was either HA- or Myc-tagged. Expression of the receptors was verified via Western blotting.

Other materials were obtained from the following sources: HEK-293 cells (American Type Culture Collection, Manassas, VA); fura-2/ace-toxymethly ester and *n*-dodecyl- $\beta$ -D-maltoside (D $\beta$ M) (Calbiochem, San Diego, CA); (-)-norepinephrine bitartrate, BMY 7378 (8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro[4.5]decane-7,9-dione dihydrochloride), prazosin, albuterol, Dulbecco's modified Eagle's medium (DMEM), penicillin, concanavalin A, streptomycin, bovine serum albumin (BSA), anti-FLAG M2 affinity resin, and HRP-conjugated anti-FLAG M2 antibody (Sigma-Aldrich, St. Louis, MO); anti-HA affinity matrix and 12CA5 anti-HA monoclonal antibody (Roche Diagnostics, Indianapolis, IN); and ECL reagent and enzyme-linked immunosorbent assay SuperSignal Pico ECL (Pierce Chemical, Rockford, IL). LipofectAMINE 2000 reagent and all electrophoresis reagents and precast 4 to 20% Tris-Glycine polyacryl-amide gels were obtained from Invitrogen (Carlsbad, CA).

**Cell Culture and Transfections.** HEK-293 cells were maintained in DMEM, supplemented with 10% fetal bovine serum, 10 mg/ml streptomycin, and 100 U/ml penicillin at 37°C in a humidified atmosphere with 5% CO<sub>2</sub>. For heterologous expression of receptors, 2 to 4  $\mu$ g of cDNA was mixed with LipofectAMINE 2000 (15  $\mu$ l) and added to 5 ml of serum-free medium in 10-cm plates containing cells at 70 to 90% confluency for 16 h, followed by a change of medium. Cells were harvested 48 to 72 h after transfection.

Surface Expression Assay. HEK-293 cells were transiently transfected with the appropriate epitope-tagged constructs with LipofectAMINE 2000 as described above. After 24 h, cells were split into poly-D-lysine-coated 35-mm dishes and grown overnight at 37°C to 80 to 90% confluency. Cells were then rinsed three times with phosphate-buffered saline (PBS) with Ca<sup>2+</sup>, fixed with 4% paraformaldehyde in PBS/Ca<sup>2+</sup> for 30 min, and rinsed three times with PBS/Ca<sup>2+</sup>. Cells were then incubated in blocking buffer (2% nonfat milk in PBS/Ca<sup>2+</sup>) for 30 min and incubated with the appropriate concentrations of HRP-conjugated anti-FLAG M2 or 12CA5 anti-HA monoclonal antibodies in blocking buffer for 1 h at room temperature. Following incubation with the HRP-conjugated anti-Flag antibody, cells were washed three times with blocking buffer, one time with PBS/Ca<sup>2+</sup>, and then incubated with enzyme-linked immunosorbent assay ECL reagent for 15 sec. Following incubation with the 12CA5 antibody, cells were washed three times with blocking buffer and incubated with the appropriate concentration of HRP-conjugated anti-mouse secondary antibody for 1 h, washed, and then incubated with ECL. The chemiluminescence of the whole 35-mm plate, which corresponds to the amount of receptor on the cell surface (Uberti et al., 2003), was quantified in a TD20/20 luminometer (Turner Designs, Sunnyvale, CA). Control experiments using antitubulin antibodies revealed no detectable luminescence, revealing no antibody penetration of the cells under the fixation conditions that were used. For each data point, three to five plates were averaged per experiment. The results were analyzed using unpaired Student's ttests where applicable (GraphPad Software Inc., San Diego, CA). For internalization assays, cells were first rinsed and then stimulated with or without 10  $\mu$ M albuterol in DMEM for 30 min at 37°C before cell surface measurements described above. Mean values  $\pm$  S.E.M. were calculated as percent absorbance in arbitrary units and statistically compared using the unpaired Student's t test, with a p value less than 0.05 considered significant.

**Confocal Microscopy.** Cells transiently transfected with HA- or GFP-tagged constructs were grown on sterile coverslips, fixed with 4% paraformaldehyde, and permeabilized with saponin buffer containing 2% BSA and 0.04% saponin in PBS for 30 min at room temperature. The cells were then incubated with 12CA5 anti-HA monoclonal antibody for 1 h at room temperature. After three washes with saponin buffer, cells were incubated with a rhodamine red-conjugated anti-mouse IgG at a 1:200 dilution for 1 h at room temperature. After three washes with saponin buffer three washes with saponin buffer and one wash with PBS, coverslips were mounted using Vectashield mounting medium

(Vector Laboratories (Burlingame, CA). Cells were scanned with a Zeiss LSM 510 laser scanning confocal microscope (Carl Zeiss GmbH, Jena, Germany) as described previously (Uberti et al., 2003; Hague et al., 2004b). For detection of GFP, fluorescein isothiocyanate fluorescence was excited using an argon laser at a wavelength of 488 nm. The absorbed wavelength was detected for 510 to 520 nm for GFP. For detecting rhodamine red, rhodamine fluorescence was excited using a helium-neon laser at a wavelength of 522 nm. The pinhole size was maintained at 1 airy unit for all images.

Radioligand Binding. For radioligand binding, confluent 15-cm plates were washed with PBS and harvested by scraping. Cells were collected by centrifugation and homogenized with a Polytron. Cell membranes were collected by centrifugation at 30,000g for 20 min and resuspended by homogenization in  $1 \times$  buffer (25 mM HEPES, 150 mM NaCl, pH 7.4, and 5 mM EDTA) with a protease inhibitor cocktail (1 mM benzamidine, 3  $\mu$ M pepstatin, 3  $\mu$ M phenylmethylsulfonylfluoride, 3  $\mu$ M aprotinin, and 3  $\mu$ M leupeptin). Radioligand binding sites were measured by saturation analysis of the specific binding of the  $\alpha_1$ -AR antagonist radioligand <sup>125</sup>I-BE (20-800 pM) or the β-AR antagonist <sup>125</sup>I-pindolol (40–2000 pM). Nonspecific binding was defined as binding in the presence of 10  $\mu$ M phentolamine (for <sup>125</sup>I-BE) or 100 µM isoproterenol (for <sup>125</sup>I-pindolol). The pharmacological specificity of  $\alpha_{1D}$ -AR binding sites was determined by displacement of <sup>125</sup>I-BE (50 pM) by NE, a nonselective adrenergic agonist, prazosin, a nonselective  $\alpha_1$ -AR antagonist, or BMY 7378, a selective  $\alpha_{1D}$ -AR antagonist. The pharmacological specificity of  $\beta_2$ -AR binding sites was determined by displacement of  $^{125}$ I-pindolol (100 pM) by the β-AR-selective ligands CGP-12177 (4-[3-[(1,1dimethyethyl)amino]-2-hydroxypropoxy]-1,3-dihydro-2H-benzimidazol-2-one), CGP-20712A [(±)-2-hydroxy-5-[2-[[2-hydroxy-3-[4-[1-methyl-4-(trifluoromethyl)-1H-imidazol-2-yl]phenoxy]propyl]amino]ethoxy]benzamide methanesulfonate salt], and ICI 118,551 [(±)-1-[2,3-(dihydro-7-methyl-1H-inden-4-yl)oxy]-3-[(methylethyl)amino-2-butanol]. Data were analyzed by nonlinear regression analysis (Theroux et al., 1996).

Solubilization, Immunoprecipitation, and Western Blot Analysis. Membrane preparations (2–3 mg of protein) were prepared as described above and solubilized with 2% D $\beta$ M in 1× buffer supplemented with a protease inhibitor cocktail for 2 h at 4°C with gentle agitation. Following solubilization, samples were centrifuged at 16,000g, and supernatants were diluted to 0.2% D $\beta$ M in 1× buffer supplemented with protease inhibitors. Soluble receptors were incubated with M2 anti-FLAG or anti-HA affinity matrix overnight at 4°C with gentle agitation. Resin was collected by centrifugation, washed with 1× buffer, and then eluted with 4× sample buffer (62.5 mM Tris-HCl, pH 6.8, 20% glycerol, 2% SDS, and 5%  $\beta$ -mercaptoethanol).

Immunoprecipitated samples were run on a 4 to 20% Tris-Glycine SDS-polyacrylamide gel electrophoresis, transferred to nitrocellulose, and the membranes were blocked with 5% nonfat dried milk in Tris-buffered saline containing 0.1% Tween 20 for 1 h at room temperature with gentle agitation. Membranes were then incubated with the appropriate concentration of HRP-conjugated M2-anti-FLAG antibody or 12CA5 anti-HA monoclonal antibody for 1 h at room temperature. Membranes were washed with Tris-buffered saline containing 0.1% Tween 20 and detected with ECL directly or alternatively incubated with the appropriate concentration of secondary IgG antibody and then detected with ECL.

Measurement of Intracellular Calcium Mobilization. Intracellular Ca<sup>2+</sup> mobilization was measured using fura-2 as described previously (Theroux et al., 1996). In brief, confluent 15-cm plates of transiently transfected HEK-293 cells were washed one time with Ca<sup>2+</sup>-free Hanks solution and then detached using 0.25% trypsin. Cells were collected in 10 ml of Hanks buffer with Ca<sup>2+</sup> and centrifuged for 2 min at 1000g at 4°C. Cells were resuspended in DMEM containing 0.05% BSA and incubated with 1  $\mu$ M fura-2/AM for 15 min. Cells were then diluted, centrifuged and resuspended in biological salt solution (130 mM NaCl, 5 mM KCl, 1 mM MgCl<sub>2</sub>, 1.5 mM CaCl<sub>2</sub>, 20 mM HEPES, 10 mM glucose, and 0.1% BSA), and divided into 3-ml aliquots  $(2.0 \times 10^6 \text{ cells/ml})$  and placed on ice. Prior to use, cells were warmed to 37°C, centrifuged, resuspended in 3 ml of biological salt solution, and transferred to a cuvette. Luminescence was measured by a PerkinElmer LS50 luminescence spectrofluorometer (PerkinElmer Life and Analytical Sciences (Boston, MA), NE (100  $\mu$ M) was used to stimulate  $\alpha_{1D}$ -AR-induced Ca<sup>2+</sup> mobilization. Calculation of [Ca<sup>2+</sup>], was performed by equilibrating intra- and extracellular Ca<sup>2+</sup> with 30  $\mu$ M digitonin ( $R_{max}$ ) followed by 9 mM EGTA  $(R_{\min})$  using a  $K_d$  of 225 nM for fura-2. Mean values  $\pm$  S.E.M. were calculated and were statistically compared using the unpaired Student's *t* test, with a *p* value less than 0.05 considered significant. For desensitization assays, cells were pretreated with or without 10  $\mu$ M albuterol in DMEM for 30 min at 37°C. Cells were then rinsed three times with Ca<sup>2+</sup>-free Hanks buffer, and Ca<sup>2+</sup> mobilization was measured as described above.

# Results

 $\beta_2$ -AR Promotes  $\alpha_{1D}$ -AR Surface Expression. Previous studies have revealed that  $\alpha_{1D}$ -AR is primarily found in intracellular compartments when expressed in a variety of heterologous cells (Daly et al., 1998; McCune et al., 2000; Chalothorn et al., 2002; Hague et al., 2004b). Recently, we found that  $\alpha_{1B}$ -/ $\alpha_{1D}$ -AR heterodimerization can dramatically increase the surface expression and functional activity of  $\alpha_{1\mathrm{D}}\text{-}\mathrm{AR}$  (Uberti et al., 2003; Hague et al., 2004b). To screen for other potential interacting receptors that might traffic  $\alpha_{1D}$ -AR to the plasma membrane, we used a luminometerbased surface expression assay, which we have previously used to examine the surface expression of epitope-tagged GPCRs (Uberti et al., 2003; Hague et al., 2004b). In this assay, Flag- or HA-tagged  $\alpha_{1D}$ -AR was coexpressed with various group I GPCRs in HEK-293 cells, and the cell surface expression of the  $\alpha_{1D}$ -AR was quantified (Fig. 1). When expressed alone,  $\alpha_{1D}$ -AR was barely detectable on the cell surface, whereas coexpression with  $\alpha_{1B}$ -AR significantly increased  $\alpha_{1D}$ -AR surface expression, as previously reported (Uberti et al., 2003; Hague et al., 2004b).  $\alpha_{1D}$ -AR was also coexpressed in these screens with 28 other GPCRs. Strikingly, the only receptor other than  $\alpha_{1B}$ -AR to have an effect on  $\alpha_{1D}$ -AR surface expression was  $\beta_2$ -AR, which produced nearly as dramatic an enhancement of  $\alpha_{1D}$ -AR trafficking as  $\alpha_{1B}$ -AR. In contrast, other members of the AR family and all of the other group 1 GPCRs examined did not have any detectable effect on trafficking of  $\alpha_{1D}$ -AR to the cell surface. These results reveal a novel and selective effect of  $\beta_2$ -AR on facilitating efficient plasma membrane trafficking of  $\alpha_{1D}$ -AR, similar to the effect observed previously with  $\alpha_{1B}$ -AR.

To confirm these results using a different technique, we performed immunofluorescence confocal microscopy experiments. HEK-293 cells were cotransfected with GFP-tagged  $\alpha_{1D}$ -AR and HA-tagged  $\beta_2$ -AR (Fig. 2, D–F) or HA-tagged  $\beta_1$ -AR (Fig. 2, G–I).  $\alpha_{1D}$ -AR was found to be localized intracellularly when expressed alone (Fig. 2, A–C). However, as seen in Fig. 2, D to F, coexpression with  $\beta_2$ -AR resulted in a dramatic translocation of  $\alpha_{1D}$ -AR from intracellular sites to the plasma membrane. In contrast, coexpression of  $\beta_1$ -AR with  $\alpha_{1D}$ -AR did not result in any significant translocation of  $\alpha_{1D}$ -AR, which remained predominantly intracellular, whereas  $\beta_1$ -AR immunostaining was found almost exclusively on the cell surface (Fig. 2, G–I). These data confirm that  $\beta_2$ -AR, but not  $\beta_1$ -AR, selectively promotes trafficking of  $\alpha_{1D}$ -AR to the plasma membrane.



**Fig. 1.**  $\alpha_{1D}$ -AR cell surface expression is promoted by coexpression with  $\alpha_{1B}$ -AR and  $\beta_2$ -AR but not by coexpression with other group I GPCRs. Flagor HA-tagged  $\alpha_{1D}$ -AR surface expression was detected and quantified by a luminometer-based expression assay following coexpression in HEK-293 cells with a variety of other group I GPCRs, as listed (1–30). The receptors examined in this study were chosen because they are all group I GPCRs that are known to be found in at least some of the same tissues as  $\alpha_{1D}$ -AR. In these experiments,  $\alpha_{1D}$ -AR expressed alone was barely detectable on the cell surface, whereas  $\alpha_{1D}$ -AR coexpressed with  $\alpha_{1B}$ -AR showed a 6- to 8-fold increase in  $\alpha_{1D}$ -AR surface expression, but coexpression with  $\beta_2$ -AR resulted in a significant (5- to 6-fold) increase in  $\alpha_{1D}$ -AR surface expression. The bars represent the mean fold increase in  $\alpha_{1D}$ -AR surface expression for each coexpressed receptor relative to  $\alpha_{1D}$ -AR alone, and each error bar represents the S.E.M. for three to six independent experiments. \*, significantly different (p < 0.05) relative to  $\alpha_{1D}$ -AR expressed alone, as assessed using an unpaired Student's *t* test analysis. AT, angiotensin receptor; LPA, lysophosphatidic acid receptor; D, dopamine receptor; H, histamine receptor; P2Y, purinergic receptor.

 $\beta_2$ -AR Physically Associates with  $\alpha_{1D}$ -AR in HEK-293 **Cells.** The strong enhancement of  $\alpha_{1D}$ -AR surface expression induced by coexpression with  $\beta_2$ -AR suggested the possibility of a physical association between the two receptors. Coimmunoprecipitation experiments using differentially tagged receptors were performed to test this hypothesis. Flag-tagged  $\alpha_{1D}$ -AR was expressed either alone or in combination with HA-tagged  $\beta_2$ - or  $\beta_1$ -AR in HEK-293 cells (Fig. 3). As expected, Western blotting for Flag-tagged  $\alpha_{1D}$ -AR after immunoprecipitation with anti-Flag antibody revealed the presence of  $\alpha_{1D}$ -AR (data not shown). Interestingly, HA-tagged  $\beta_2$ -AR was robustly communoprecipitated with Flag-tagged  $\alpha_{1D}$ -AR (Fig. 3B, lane 2). In contrast, HA-tagged  $\beta_1$ -AR did not detectably coimmunoprecipitate with  $\alpha_{1D}$ -AR (Fig. 3B, lane 3). The lack of  $\alpha_{1D}$ -/ $\beta_1$ -AR coimmunoprecipitation was not due to inefficient receptor expression because parallel blots of cell lysates showed a comparable level of expression for both HA-tagged  $\beta_1$ - and  $\beta_2$ -AR (Fig. 3A). Furthermore,  $\alpha_{1D}$ -AR/ $\beta_2$ -AR interactions were not detected when the receptors were expressed in separate populations of cells that were solubilized, sonicated, and mixed together prior to immunoprecipitation and Western blot analysis (data not shown). Taken together, these data indicate that  $\alpha_{1D}$ -AR and  $\beta_2$ -AR exhibit selective heterodimerization in a cellular context.

Pharmacological Properties of  $\alpha_{1D}$ -/ $\beta_2$ -AR Hetero**dimers.** To determine whether the physical interaction of  $\alpha_{1D}$ -AR with  $\beta_2$ -AR might result in altered  $\alpha_{1D}$ -AR pharmacological properties, ligand binding studies were performed using the  $\alpha_1$ -AR-selective antagonist <sup>125</sup>I-BE. The density of binding sites  $(B_{\text{max}})$  and the affinity  $(K_{\text{d}})$  for <sup>125</sup>I-BE were determined via saturation analysis of specific <sup>125</sup>I-BE binding to membranes expressing either  $\alpha_{1D}$ -AR alone or  $\alpha_{1D}$ -/  $\beta_2$ -AR (Table 1). No significant difference in affinity for  $^{125}\text{I-BE}$  binding was observed upon coexpression of  $\alpha_{1\text{D}}\text{-AR}$ with  $\beta_2$ -AR. However, the density of  $\alpha_{1D}$ -AR binding sites increased by nearly 2-fold upon coexpression of the two receptors (Table 1), similar to what has previously been observed for  $\alpha_{1D}$ -AR coexpression with  $\alpha_{1B}$ -AR (Uberti et al., 2003). These data are consistent with the observed effects of  $\beta_2$ -AR and  $\alpha_{1B}$ -AR on promoting the surface expression of  $\alpha_{1D}$ -AR, since it is known that properly assembled multi-



**Fig. 3.** Communoprecipitation of  $\beta_2$ -AR but not  $\beta_1$ -AR with  $\alpha_{1D}$ -AR. A, Western blots of HEK-293 cell lysates coexpressing Flag- $\alpha_{1D}$ -AR with HA- $\beta_1$ - or HA- $\beta_2$ -AR. Expression levels of the two  $\beta$ -AR subtypes were examined with an anti-HA antibody. The anti-HA antibody detects several nonspecific bands, as shown in the first lane (Untransfected), but the arrows indicate the bands corresponding to transfection-specific detection of  $\beta_1$ - and  $\beta_2$ -AR, which were expressed at comparable levels. B, Flag- $\alpha_{1D}$ -AR was expressed alone or coexpressed with either HA- $\beta_1$ - or HA- $\beta_2$ -AR in HEK-293 cells. Membranes were solubilized and immunoprecipitated (IP) with anti-Flag affinity resin, and Western blots were performed with the anti-HA antibody.  $\beta_2$ -AR was robustly coimmunoprecipitated with  $\alpha_{1D}$ -AR, whereas  $\beta_1$ -AR was not. The data from all panels of this figure are representative of three to four experiments for each condition.

meric proteins residing in the plasma membrane often exhibit much slower rates of turnover than unassembled proteins that are trapped in the ER/Golgi complex (Wanamaker et al., 2003). Further pharmacological studies were performed to assess the inhibition of specific <sup>125</sup>I-BE binding by the endogenous ligand NE, the  $\alpha_1$ -AR-selective antagonist prazosin, and the  $\alpha_{1D}$ -selective antagonist BMY 7378. The  $K_i$ values for all three of these ligands were not significantly different for membranes expressing  $\alpha_{1D}$ -AR alone versus membranes expressing the  $\alpha_{1D}$ -AR/ $\beta_2$ -AR combination (Table 1). Similarly, no changes in binding affinity were observed for several  $\beta$ -AR-selective ligands in displacing <sup>125</sup>I-

Fig. 2. Coexpression of  $\alpha_{1D}$ -AR with  $\beta_2$ -AR results in plasma membrane expression and colocalization of  $\alpha_{1D}$ - $/\beta_2$ -AR. C-terminal GFP-tagged  $\alpha_{1D}$ -AR expressed alone in HEK-293 cells was found predominantly in intracellular compartments, as shown via confocal microscopy (A-C). Coexpression with HA- $\beta_2$ -AR, which was visualized with rhodamine red, resulted in markedly enhanced membrane targeting of  $\alpha_{1D}$ -AR and colocalization of the receptors (D–F). When GFP- $\alpha_{1D}$ -AR was coexpressed with HA- $\beta_1$ -AR, in contrast,  $\alpha_{1D}$ -AR remained localized intracellularly, whereas  $\beta_1$ -AR was found almost exclusively at the plasma membrane (G-I). Each image is representative of a number of cells examined from three to four individual experiments for each condition.



Ligand binding properties of  $\alpha_{1D}$ -AR alone versus  $\alpha_{1D}$ -/ $\beta_2$ -AR

HEK-293 cells were either transfected with  $\alpha_{\rm 1D}$ -AR alone or cotransfected with  $\alpha_{\rm 1D}$ -AR and  $\beta_2$ -AR. Specific binding of [<sup>125</sup>I]-BE was measured as described under The line provides  $M_{\rm max}$  and  $K_{\rm d}$  values were calculated by nonlinear regression of saturation curves, and  $K_{\rm i}$  values for inhibition of binding by BMY7378, prazosin, and NE were also determined. Each value represents the mean  $\pm$  S.E.M. for three to six experiments in duplicate.

|                                                  | $\alpha_{1\mathrm{D}}\text{-}\mathrm{AR}$ | $\alpha_{\rm 1D}\mathchar`-/\beta_2\mathchar`-AR$ |
|--------------------------------------------------|-------------------------------------------|---------------------------------------------------|
| $[^{125}I]BE(K_d)$                               | $74\pm11~\mathrm{pM}$                     | $73\pm8~\mathrm{pM}$                              |
| $\lfloor^{125}\text{I} brace\text{BE}(B_{\max})$ | $130 \pm 13$ fmol/mg                      | $252 \pm 17$ fmol/mg*                             |
| BMY7378 (K <sub>i</sub> )                        | $18\pm 6~\mathrm{nM}$                     | $14 \pm 4 \text{ nM}$                             |
| $Prazosin(K_i)$                                  | $0.33\pm0.04~\mathrm{nM}$                 | $0.43\pm0.09~\mathrm{nM}$                         |
| Norepinephrine $(K_i)$                           | $820\pm80~nM$                             | $870\pm60~nM$                                     |

\* Significantly different (P < 0.05) compared with  $\alpha_{1D}$ -AR expressed alone.

pindolol binding to membranes expressing  $\beta_2$ -AR alone versus membranes expressing both  $\alpha_{1D}$ -AR and  $\beta_2$ -AR (Table 2). Thus, heterodimerization of  $\beta_2$ -AR with  $\alpha_{1D}$ -AR was not found in these studies to alter the limited number of receptor pharmacological properties that were examined.

Increased Functional Responses and Internalization of  $\alpha_{1D}$ -/ $\beta_2$ -AR Heterodimers. Since coexpression with  $\beta_2\text{-AR}$  enhanced  $\alpha_{1\mathrm{D}}\text{-AR}$  surface expression and binding site density, we next determined if this physical interaction might increase  $\alpha_{1D}$ -AR functional responses.  $\beta_2$ -AR and  $\alpha_{1D}$ -AR are known to be primarily coupled to different G

#### TABLE 2

Ligand-binding properties of  $\beta_2$ -AR alone versus  $\alpha_{1D}$ -/ $\beta_2$ -AR

HEK-293 cells were either transfected with  $\alpha_{1D}$ -AR alone or cotransfected with  $\alpha_{1D}$ -AR and  $\beta_2$ -AR. Specific binding of  $[^{125}I]$ -pindolol was measured as described under *Materials and Methods*.  $B_{\text{max}}$  and  $K_{\text{d}}$  values were calculated by nonlinear regression of saturation curves, and  $K_{\text{d}}$  values for inhibition of binding by unlabeled CGP-12177A, CGP-20712, and ICI 118,551 were determined. Each value represents the mean  $\pm$  S.E.M. for three to four experiments performed in duplicate.

|                                                                                                                                                                                                                            | $\beta_2$ -AR                                                                                                                                                                    | $\alpha_{\rm 1D}\text{-}/\beta_2\text{-}{\rm AR}$                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{l} [^{125}\text{I]Pindolol}\;(K_{\rm d}) \\ [^{125}\text{I]Pindolol}\;(B_{\rm max}) \\ (\pm)\text{CGP-12177A}\;(K_{\rm i}) \\ \text{CGP-20712}\;(K_{\rm i}) \\ \text{ICI 118,551}\;(K_{\rm i}) \end{array}$ | $\begin{array}{l} 244 \pm 51 \ \mathrm{pM} \\ 328 \pm 40 \ \mathrm{fmol/mg} \\ 5.1 \pm 1.4 \ \mathrm{nM} \\ 15.7 \pm 2.1 \ \mathrm{nM} \\ 3.5 \pm 0.9 \ \mathrm{nM} \end{array}$ | $\begin{array}{l} 359 \pm 87 \ \mathrm{pM} \\ 358 \pm 46 \ \mathrm{fmol/mg} \\ 8.7 \pm 2.3 \ \mathrm{nM} \\ 13.6 \pm 3.6 \ \mathrm{nM} \\ 7.1 \pm 2.9 \ \mathrm{nM} \end{array}$ |

proteins (G<sub>s</sub> and G<sub>q</sub>, respectively). We examined  $\alpha_{1D}$ -AR signaling by studying NE-induced intracellular Ca<sup>2+</sup> mobilization. It has previously been reported that  $\alpha_{1D}$ -AR transfection into certain cell types results in a modest amount of constitutive receptor activity (Garcia-Sainz and Torres-Padilla, 1999; McCune et al., 2000), but we did not observe any evidence for agonist-independent receptor signaling upon  $\alpha_{1D}$ -AR transfection into HEK-293 cells. Furthermore,  $\alpha_{1D}$ -AR surface expression was not enhanced by treatment of the cells with prazosin in our experiments (data not shown). When cells expressing  $\alpha_{1D}$ -AR alone were stimulated with NE, a marginal amount of Ca<sup>2+</sup> mobilization was observed, as previously reported (Hague et al., 2004b). However, there was a substantial (~2.5-fold) increase in NE-stimulated  $Ca^{2+}$  mobilization when  $\beta_2$ -AR was coexpressed  $\alpha_{1D}$ -AR (Fig. 4A). No significant Ca<sup>2+</sup> mobilization was observed in cells transfected with  $\beta_2$ -AR alone (data not shown). Since many GPCRs are known to undergo internalization from the cell surface in response to agonist stimulation (Claing et al., 2002), we also examined  $\alpha_{1D}$ -AR endocytosis in response to stimulation with the  $\alpha_1$ -AR-selective agonist phenylephrine (100  $\mu$ M). When  $\alpha_{1D}$ -AR was expressed alone, stimulation with phenylephrine for 30 min had no significant effect on the small amount of  $\alpha_{1D}$ -AR on the cell surface. However, when  $\alpha_{1D}$ -AR was coexpressed with  $\beta_2$ -AR and stimulated in the same fashion, more than 40% internalization of  $\alpha_{1D}$ -AR was observed. These results indicate that  $\alpha_{1D}$ -/ $\beta_2$ -AR heterodimerization not only promotes  $\alpha_{1D}$ -AR surface expression, it also enhances  $\alpha_{1D}$ -AR-mediated signaling and allows for agonist-promoted internalization of  $\alpha_{1D}$ -AR.

Albuterol-Induced Cointernalization and Cross-Desensitization between  $\alpha_{1D}$ -/ $\beta_2$ -AR Heterodimers.  $\beta_2$ -AR is known to undergo rapid internalization from the cell surface upon stimulation with  $\beta$ -adrenergic agonists (Claing et al., 2002). Thus, to further assess the potential functional importance of the physical interaction between  $\beta_2$ -AR and  $\alpha_{1D}$ -AR, we examined the possibility of cointernalization between these two receptors. As expected, a 30-min treatment with the  $\beta_2$ -AR selective agonist albuterol (10  $\mu$ M) resulted in more than 40% internalization of  $\beta_2$ -AR, independent of whether the receptor was expressed alone or with  $\alpha_{1D}$ -AR (data not shown). When  $\alpha_{1D}$ -AR was expressed alone, no change in receptor surface expression was observed upon albuterol stimulation. Interestingly, however,  $\alpha_{1D}$ -AR underwent a robust cointernalization (~35%) when coexpressed with  $\beta_2$ -AR and stimulated with albuterol (Fig. 4C). These data suggest that heterodimerization with  $\beta_2$ -AR allows for agonist-promoted cointernalization of  $\alpha_{1D}$ -AR.

GPCR internalization is known to play a role in regulating receptor desensitization and resensitization (Claing et al., 2002). Since we found that  $\alpha_{1D}$ -AR can undergo cointernalization with agonist-stimulated  $\beta_2$ -AR, we next examined whether  $\alpha_{1D}$ -AR signaling might become desensitized upon agonist activation of coexpressed  $\beta_2$ -AR. HEK-293 cells expressing  $\alpha_{1D}$ -AR or the  $\alpha_{1D}$ -/ $\beta_2$ -AR combination were pretreated for 30 min with 10  $\mu$ M albuterol, then stimulated with 100  $\mu$ M NE to examine  $\alpha_{1D}$ -AR-induced Ca<sup>2+</sup> mobilization. Strikingly, pretreatment with 10  $\mu$ M albuterol resulted in a nearly complete attenuation of the aforementioned large increase in NE-stimulated Ca<sup>2+</sup> mobilization in cells coexpressing  $\alpha_{1D}$ -/ $\beta_2$ -ARs, whereas it had no effect at all in cells expressing  $\alpha_{1D}$ -AR alone (Fig. 5). To examine whether this effect might be due to  $\beta_2$ -AR-induced increases in cellular cAMP, we pretreated matched plates of cells with 20  $\mu$ M forskolin, which directly activates adenylyl cyclase, instead of albuterol. However, no effect of forskolin pretreatment on NE-stimulated Ca<sup>2+</sup> mobilization was observed (Fig. 5). To assess whether the effects of the albuterol pretreatment might be due to  $\alpha_{1D}$ -/ $\beta_2$ -AR cointernalization, we also performed experiments where cells were pretreated with concanavalin A, which prevents receptor internalization (Waldo et al., 1983), prior to albuterol pretreatment. Under these conditions, albuterol pretreatment had no detectable effect on NE-stimulated Ca<sup>2+</sup> mobilization in cells coexpressing  $\alpha_{1D}$ -/ $\beta_2$ -ARs. Taken together, these results suggest that



Fig. 4. Coexpression with  $\beta_2$ -AR increases  $\alpha_{1D}$ -AR coupling to intracellular Ca<sup>2+</sup> mobilization and  $\alpha_{1D}$ -AR agonist-promoted internalization. A,  $\alpha_{1D}$ -AR was expressed either alone or with  $\beta_2$ -AR in HEK-293 cells. The cells were loaded with fura-2, stimulated with 100  $\mu$ M NE, and analyzed for changes in [Ca<sup>2+</sup>]<sub>i</sub>. The values for each experiment are represented as the percentage increase in Ca<sup>2+</sup> mobilization over  $\alpha_{1D}$ -AR expressed alone. B, agonist-induced internalization of  $\alpha_{1D}$ -AR in response to phenylephrine. Flag- $\alpha_{1D}$ -AR was expressed either alone or in the presence of HA- $\beta_2$ -AR in HEK-293 cells, and  $\alpha_{1D}$ -AR internalization was examined using a luminometer-based assay following a 30-min stimulation with the  $\alpha_1$ -AR-selective agonist, phenylephrine (PE; 100  $\mu$ M). C, cointernalization of  $\alpha_{1D}$ -AR with  $\beta_2$ -AR in response to albuterol. Flag- $\alpha_{1D}$ -AR was expressed assay following a 30-min stimulation with the  $\alpha_1$ -AR-selective agonist, phenylephrine (PE; 100  $\mu$ M). C, cointernalization of  $\alpha_{1D}$ -AR with  $\beta_2$ -AR in response to albuterol. Flag- $\alpha_{1D}$ -AR was expressed assay following a 30-min stimulation with the selective  $\beta_2$ -AR in HEK-293 cells, and  $\alpha_{1D}$ -AR with  $\beta_2$ -AR in response to albuterol. Flag- $\alpha_{1D}$ -AR was expressed alone, as assessed using a nupared Student's *t* test analysis. The bars and error bars represent the means  $\pm$  S.E.M. for three to four independent experiments, with each experiment performed in triplicate.





 $\alpha_{1D}$ -AR signaling can be desensitized via cointernalization with  $\beta_2$ -AR.

## Discussion

The  $\alpha_{1D}$ -AR has been an enigma in the adrenergic field for many years due to the fact that it is inefficiently trafficked to the plasma membrane and, therefore, very difficult to study when heterologously expressed in most cell types (Theroux et al., 1996; Daly et al., 1998; McCune et al., 2000; Chalothorn et al., 2002; Hague et al., 2004b). We have previously shown that  $\alpha_{1D}$ -AR coexpression with  $\alpha_{1B}$ -AR results in markedly enhanced trafficking to the plasma membrane (Uberti et al., 2003; Hague et al., 2004b). Here, we show that coexpression with  $\beta_2$ -AR, another AR family member, is also capable of dramatically increasing  $\alpha_{1D}$ -AR surface expression in heterologous cells. Importantly, the additional  $\alpha_{1D}$ -ARs that make it to the cell surface due to heterodimerization with  $\beta_2$ -AR are functional since we observed significantly enhanced NEstimulated Ca<sup>2+</sup> mobilization in cells cotransfected with  $\beta_2$ -AR. These findings provide an additional mechanism for the efficient trafficking of functional  $\alpha_{1D}$ -AR to the cell surface beyond heterodimerization with  $\alpha_{1B}$ -AR, which is important because mice lacking  $\alpha_{1B}$ -AR are known to retain at least some  $\alpha_{1D}$ -AR-mediated responses in certain tissues (Cavalli et al., 1997; Turnbull et al., 2003).

Our screen with approximately 30 different group I GPCRs demonstrated that  $\alpha_{1D}$ -AR heterodimerization is extremely selective. Notably, we found that  $\beta_2$ -AR, but not the closely related  $\beta_1$ -AR, facilitates  $\alpha_{1D}$ -AR surface expression and can be robustly coimmunoprecipitated with  $\alpha_{1D}$ -AR from cells. This subtype selectivity parallels our previous findings that  $\alpha_{1B}$ -AR, but not the closely related  $\alpha_{1A}$ -AR, promotes  $\alpha_{1D}$ -AR surface expression and exhibits coimmunoprecipitation with  $\alpha_{1D}$ -AR (Uberti et al., 2003; Hague et al., 2004b). Similar observations have recently been made for the specificity of GABA<sub>B</sub>R1 heterodimerization, with extensive screens revealing that GABA<sub>B</sub>R2, but not a number of other GPCRs, selectively promotes the surface expression of GABA<sub>B</sub>R1 (Balasubramanian et al., 2004). Furthermore, subtype-selective heterodimerization has also been observed between certain combinations of other GPCRs (Angers et al., 2002). Such observations belie the notion that GPCR heterodimerization is a nonselective and/or artificial process and suggest instead that these interactions between receptors are quite specific, with this selectivity possibly providing important clues as to the physiological importance of the various associations.

Fig. 5. Cross-desensitization of  $\alpha_{1D}$ -AR by  $\beta_2$ -AR is dependent on receptor internalization. Cells were pretreated with albuterol alone (10  $\mu$ M for 30 min), forskolin alone (20  $\mu$ M for 30 min), or concanavalin A (10  $\mu$ M for 15 min) followed by albuterol (10  $\mu$ M for 30 min), as indicated. The cells were then rinsed, loaded with fura-2, stimulated with 100  $\mu$ M NE, and analyzed for changes in [Ca<sup>2+</sup>]<sub>i</sub>. The values for each experiment are represented as a percentage of the amount of Ca<sup>2+</sup> mobilization observed for  $\alpha_{1D}$ -AR expressed alone. Albuterol pretreatment almost completely blocked  $\alpha_{1D}$ -AR-mediated  $Ca^{2+}$  mobilization in cells coexpressing  $\beta_2$ -AR, revealing crossdesensitization between  $\beta_2$ -AR and  $\alpha_{1D}$ -AR. This effect was not mimicked by forskolin but was blocked by concanavalin A, suggesting a dependence on the cointernalization of  $\alpha_{\rm 1D}\text{-}{\rm AR}$ with  $\beta_2$ -AR. The data are expressed as mean  $\pm$  S.E.M. for three to four individual experiments. \*, significantly different (p <0.05) relative to nonpretreated  $\alpha_{\rm 1D}\text{-}{\rm AR}$  alone, as assessed using an unpaired Student's t test analysis.

We consistently observed in our studies a small amount of  $\alpha_{1D}$ -AR on the cell surface even in the absence of coexpression of either  $\alpha_{1B}$ -AR or  $\beta_2$ -AR. This observation might seem to be inconsistent with the idea that  $\alpha_{1D}$ -AR requires heterodimerization with other receptors for trafficking to the plasma membrane. However, it is important to point out that HEK-293 cells are known to express a low level of endogenous  $\beta_2$ -AR (Daaka et al., 1997). Thus, in HEK-293 cells transfected with  $\alpha_{1D}$ -AR alone, some of the receptor might be able to access the cell surface via heterodimerization with the low level of endogenous  $\beta_2$ -AR, an effect that would presumably be greatly magnified upon  $\beta_2$ -AR overexpression. Such a dependence on heterodimerization with endogenously expressed receptors may help to explain the variability in  $\alpha_{1D}$ -AR surface expression that has been observed in different cell types, with transfected  $\alpha_{1D}$ -AR in some cells being found almost completely inside the cell in a nonfunctional state (Theroux et al., 1996; McCune et al., 2000; Chalothorn et al., 2002; Hague et al., 2004b), while being found more significantly at the cell surface and more detectably functional in other cell types (Garcia-Sainz and Torres-Padilla, 1999; Garcia-Sainz et al., 2001; Waldrop et al., 2002). The relative levels of  $\alpha_{1D}$ -AR-interacting GPCRs such as  $\alpha_{1B}$ -AR and  $\beta_2$ -AR expressed in these various cell types may be a central factor in determining the functional activity of transfected  $\alpha_{1D}$ -AR.

 $\alpha_{1D}$ -AR and  $\beta_2$ -AR are both activated by the same endogenous ligands and are also known to be colocalized in many of the same cells in the cardiovascular, central nervous, and immune systems (Young et al., 1990; Nicholas et al., 1996; Guimaraes and Moura, 2001; Kavelaars, 2002). Moreover, there is an extensive literature on cross talk between  $\alpha_1$ - and  $\beta$ -ARs (Akhter et al., 1997; Michelotti et al., 2000; Dzimiri, 2002; Yue et al., 2004). The interaction that we observed in this study between  $\alpha_{1D}$ -AR and  $\beta_2$ -AR could serve as a mechanism by which these receptors regulate each other's function in native tissues. Indeed, our studies in heterologous cells demonstrate that a  $\beta_2$ -AR-selective agonist can promote robust cointernalization of  $\alpha_{1D}$ -AR. In addition,  $\alpha_{1D}$ -AR-mediated  $\operatorname{Ca}^{2+}$  mobilization was greatly attenuated via pretreatment of cells with a  $\beta_2$ -AR-selective agonist. This effect was probably due to cointernalization of  $\alpha_{1D}$ -AR with  $\beta_2$ -AR since it was blocked by concanavalin A pretreatment and was not mimicked by forskolin pretreatment. Taken together, these studies indicate that  $\beta_2$ -AR not only can regulate  $\alpha_{1D}$ -AR surface expression but can also control  $\alpha_{1D}$ -AR internalization and desensitization, thereby providing a novel mechanism of cross talk between  $\alpha_1$ - and  $\beta$ -ARs.

Like  $\alpha_{1D}$ -AR, many other GPCRs, such as  $\alpha_{2C}$ -AR (Daunt et al., 1997; Olli-Lahdesmaki et al., 1999; Hurt et al., 2000), GABA<sub>B</sub>R1 (Marshall et al., 1999; Balasubramanian et al., 2004), trace amine receptors (Bunzow et al., 2001), and odorant receptors (McClintock et al., 1997; Lu et al., 2003; Hague et al., 2004a), among others, are retained in intracellular compartments and, therefore, mostly nonfunctional when expressed alone in heterologous cells. Thus, it is of tremendous physiological importance to understand the mechanisms involved in determining GPCR trafficking to the cell surface. Our studies reveal that subtype-selective heterodimerization is a critical determinant of  $\alpha_{1D}$ -AR cell surface expression. Moreover, these studies also provide novel insights into the mechanisms of cross talk between different subfamilies of adrenergic receptor.

#### Acknowledgments

We thank all of the investigators (mentioned under *Materials and Methods*) who supplied plasmids for the various receptors examined in our screeens and Amanda Castleberry for technical assistance.

#### References

- Akhter SA, Milano CA, Shotwell KF, Cho MC, Rockman HA, Lefkowitz RJ, and Koch WJ (1997) Transgenic mice with cardiac overexpression of alpha1B-adrenergic receptors: in vivo alpha1-adrenergic receptor-mediated regulation of betaadrenergic signaling. J Biol Chem 272:21253-21259.
- Alonso-Llamazares A, Zamanillo D, Casanova E, Ovalle S, Calvo P, and Chinchetru MA (1995) Molecular cloning of alpha 1d-adrenergic receptor and tissue distribution of three alpha 1-adrenergic receptor subtypes in mouse. J Neurochem 65: 2387–2392.
- Angers S, Salahpour A, and Bouvier M (2002) Dimerization: an emerging concept for G protein-coupled receptor ontogeny and function. Annu Rev Pharmacol Toxicol 42:409-435.
- Balasubramanian S, Teissere JA, Raju DV, and Hall RA (2004) Heterooligomerization between GABAA and GABAB receptors regulates GABAB receptor trafficking. J Biol Chem 279:18840-18850.
- Bunzow JR, Sonders MS, Arttamangkul S, Harrison LM, Zhang G, Quigley DI, Darland T, Suchland KL, Pasumanula S, Kennedy JL, et al. (2001) Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor. Mol Pharmacol 60:1181–1188.
- Cavalli A, Lattion AL, Hummler E, Nenniger M, Pedrazzini T, Aubert JF, Michel MC, Yang M, Lembo G, Vecchione C, et al. (1997) Decreased blood pressure response in mice deficient of the alpha1b-adrenergic receptor. *Proc Natl Acad Sci* USA 94:11589–11594.
- Chalothorn D, McCune DF, Edelmann SE, Garcia-Cazarin ML, Tsujimoto G, and Piascik MT (2002) Differences in the cellular localization and agonist-mediated internalization properties of the alpha(1)-adrenoceptor subtypes. *Mol Pharmacol* 61:1008-1016.
- Claing A, Laporte SA, Caron MG, and Lefkowitz RJ (2002) Endocytosis of G proteincoupled receptors: roles of G protein-coupled receptor kinases and beta-arrestin proteins. *Prog Neurobiol* **66**:61–79.
- Daaka Y, Luttrell LM, and Lefkowitz RJ (1997) Switching of the coupling of the beta2-adrenergic receptor to different G proteins by protein kinase A. *Nature* (Lond) **390**:88-91.
- Daly CJ, Milligan CM, Milligan G, Mackenzie JF, and McGrath JC (1998) Cellular localization and pharmacological characterization of functioning alpha-1 adrenoceptors by fluorescent ligand binding and image analysis reveals identical binding properties of clustered and diffuse populations of receptors. J Pharmacol Exp Ther 286:984–990.
- Daunt DA, Hurt C, Hein L, Kallio J, Feng F, and Kobilka BK (1997) Subtype-specific intracellular trafficking of alpha2-adrenergic receptors. *Mol Pharmacol* 51:711– 720.
- Dzimiri N (2002) Receptor crosstalk: implications for cardiovascular function, disease and therapy. Eur J Biochem 269:4713–4730.
- Garcia-Sainz JA and Torres-Padilla ME (1999) Modulation of basal intracellular calcium by inverse agonists and phorbol myristate acetate in rat-1 fibroblasts stably expressing alpha1d-adrenoceptors. *FEBS Lett* **443**:277–281.
- Garcia-Sainz JA, Vazquez-Cuevas FG, and Romero-Avila MT (2001) Phosphorylation and desensitization of alpha1d-adrenergic receptors. *Biochem J* 353:603-610.

- Guimaraes S and Moura D (2001) Vascular adrenoceptors: an update. *Pharmacol Rev* 53:319–356.
- Hague C, Uberti MA, Chen Z, Bush CF, Jones SV, Ressler KJ, Hall RA, and Minneman KP (2004a) Olfactory receptor surface expression is driven by association with the beta2-adrenergic receptor. *Proc Natl Acad Sci USA* 101:13672– 13676.
- Hague C, Uberti MA, Chen Z, Hall RA, and Minneman KP (2004b) Cell surface expression of alpha1D-adrenergic receptors is controlled by heterodimerization with alpha1B-adrenergic receptors. *J Biol Chem* **279:**15541–15549.
- Hieble JP, Bylund DB, Clarke DE, Eikenburg DC, Langer SZ, Lefkowitz RJ, Minneman KP, and Ruffolo RR Jr (1995) International Union of Pharmacology: X. Recommendation for nomenclature of alpha 1-adrenoceptors: consensus update. *Pharmacol Rev* 47:267–270.
- Hurt CM, Feng FY, and Kobilka B (2000) Cell-type specific targeting of the alpha 2c-adrenoceptor: evidence for the organization of receptor microdomains during neuronal differentiation of PC12 cells. J Biol Chem 275:35424-35431.
- Kavelaars A (2002) Regulated expression of alpha-1 adrenergic receptors in the immune system. Brain Behav Immun 16:799-807.
- Lu M, Echeverri F, and Moyer BD (2003) Endoplasmic reticulum retention, degradation and aggregation of olfactory G-protein coupled receptors. *Traffic* 4:416– 433.
- Marshall FH, Jones KA, Kaupmann K, and Bettler B (1999) GABAB receptors: the first 7TM heterodimers. *Trends Pharmacol Sci* **20**:396–399.
- McClintock TS, Landers TM, Gimelbrant AA, Fuller LZ, Jackson BA, Jayawickreme CK, and Lerner MR (1997) Functional expression of olfactory-adrenergic receptor chimeras and intracellular retention of heterologously expressed olfactory receptors. Brain Res Mol Brain Res 48:270–278.
- McCune DF, Edelmann SE, Olges JR, Post GR, Waldrop BA, Waugh DJ, Perez DM, and Piascik MT (2000) Regulation of the cellular localization and signaling properties of the alpha(1B)- and alpha(1D)-adrenoceptors by agonists and inverse agonists. *Mol Pharmacol* 57:659-666.
- Michelotti GA, Price DT, and Schwinn DA (2000) Alpha 1-adrenergic receptor regulation: basic science and clinical implications. *Pharmacol Ther* 88:281–309.
- Nicholas AP, Hokfelt T, and Pieribone VA (1996) The distribution and significance of CNS adrenoceptors examined with in situ hybridization. *Trends Pharmacol Sci* 17:245–255.
- Olli-Lahdesmaki T, Kallio J, and Scheinin M (1999) Receptor subtype-induced targeting and subtype-specific internalization of human alpha(2)-adrenoceptors in PC12 cells. J Neurosci 19:9281–9288.
- Sadalge A, Coughlin L, Fu H, Wang B, Valladares O, Valentino R, and Blendy JA (2003) alpha 1d Adrenoceptor signaling is required for stimulus induced locomotor activity. *Mol Psychiatry* 8:664-672.
- Tan CM, Brady AE, Nickols HH, Wang Q, and Limbird LE (2004) Membrane trafficking of G protein-coupled receptors. Annu Rev Pharmacol Toxicol 44:559-609.
- Tanoue A, Koshimizu TA, and Tsujimoto G (2002) Transgenic studies of alpha(1)adrenergic receptor subtype function. Life Sci 71:2207–2215.
- Theroux TL, Esbenshade TA, Peavy RD, and Minneman KP (1996) Coupling efficiencies of human alpha 1-adrenergic receptor subtypes: titration of receptor density and responsiveness with inducible and repressible expression vectors. *Mol Pharmacol* 50:1376–1387.
- Turnbull L, McCloskey DT, O'Connell TD, Simpson PC, and Baker AJ (2003) Alpha 1-adrenergic receptor responses in alpha 1AB-AR knockout mouse hearts suggest the presence of alpha 1D-AR. Am J Physiol Heart Circ Physiol 284:H1104-H1109.
- Uberti MA, Hall RA, and Minneman KP (2003) Subtype-specific dimerization of alpha 1-adrenoceptors: effects on receptor expression and pharmacological properties. *Mol Pharmacol* 64:1379–1390.
- Vicentic A, Robeva A, Rogge G, Uberti M, and Minneman KP (2002) Biochemistry and pharmacology of epitope-tagged alpha(1)-adrenergic receptor subtypes. J Pharmacol Exp Ther 302:58-65.
- Waldo GL, Northup JK, Perkins JP, and Harden TK (1983) Characterization of an altered membrane form of the beta-adrenergic receptor produced during agonistinduced desensitization. J Biol Chem 258:13900-13908.
- Waldrop BA, Mastalerz D, Piascik MT, and Post GR (2002) alpha(1B)- and alpha(1D)-Adrenergic receptors exhibit different requirements for agonist and mitogen-activated protein kinase activation to regulate growth responses in rat 1 fibroblasts. J Pharmacol Exp Ther 300:83–90.
- Wanamaker CP, Christianson JC, and Green WN (2003) Regulation of nicotinic acetylcholine receptor assembly. Ann N Y Acad Sci 998:66-80.
- Young MA, Vatner DE, and Vatner SF (1990) Alpha- and beta-adrenergic control of large coronary arteries in conscious calves. *Basic Res Cardiol* 85(Suppl 1):97–109.
- Yue Y, Qu Y, and Boutjdir M (2004) Beta- and alpha-adrenergic cross-signaling for L-type Ca current is impaired in transgenic mice with constitutive activation of epsilonPKC. Biochem Biophys Res Commun 314:749-754.
- Zhao GQ, Zhang Y, Hoon MA, Chandrashekar J, Erlenbach I, Ryba NJ, and Zuker CS (2003) The receptors for mammalian sweet and umami taste. Cell 115:255-266.

Address correspondence to: Randy A. Hall, Department of Pharmacology, Emory University School of Medicine, 5113 Rollins Research Center, 1510 Clifton Rd., Atlanta, GA 30322. E-mail: rhall@pharm.emory.edu