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Review
G protein-coupled receptors (GPCRs) mediate physio-
logical responses to a diverse array of stimuli and are the
molecular targets for numerous therapeutic drugs.
GPCRs primarily signal from the plasma membrane,
but when expressed in heterologous cells many GPCRs
exhibit poor trafficking to the cell surface. Multiple
approaches have been taken to enhance GPCR surface
expression in heterologous cells, including addition/
deletion of receptor sequences, co-expression with
interacting proteins, and treatment with pharmacologi-
cal chaperones. In addition to providing enhanced sur-
face expression of certain GPCRs in heterologous cells,
these approaches have also shed light on the control of
GPCR trafficking in vivo and in some cases have led
to new therapeutic approaches for treating human
diseases that result from defects in GPCR trafficking.

Introduction
Most vertebrate genomes encode approximately 1000 G
protein-coupled receptors (GPCRs), making them the lar-
gest class of cell-surface receptors. These receptors are
activated by various extracellular ligands (including hor-
mones, neurotransmitters, drugs and sensory stimuli) and
couple to intracellular G proteins, which mediate many of
the effects on cellular physiology downstream of receptor
activation [1]. Because of their location at the cell surface
and the discrete tissue expression patterns of many mem-
bers of this family, GPCRs are excellent targets for thera-
peutics, with nearly half of all current prescription drugs
acting through GPCRs [2].

Since GPCRs are such valuable drug targets, there are
numerous ongoing efforts to identify novel compounds that
act as agonists, antagonists or allosteric modulators of
GPCRs. These studies typically involve expression of a
given GPCR in heterologous cells, measurement of a down-
stream readout of receptor activity and screening of large
libraries of compounds for effects on activation of the re-
ceptor of interest. However, because most GPCR ligands
are not membrane-permeable these methods depend
entirely on expression of the receptor at the cell surface
so that the ligand has full access to its binding site. Thus, a
major problem for drug discovery efforts is the poor traf-
ficking to the plasma membrane of many GPCRs when
expressed in heterologous cells.

As with all transmembrane proteins, plasmamembrane
localization of GPCRs depends on efficient delivery to the
plasma membrane [3]. Many factors are involved in re-
ceptor delivery to the plasma membrane. The endoplasmic
reticulum (ER) is the primary location for protein folding
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and maturation, which must proceed properly for receptor
release to the Golgi and eventually to the plasma mem-
brane. Treatments that globally disrupt ER function, in-
cludingmodulation of heat shock proteins and inhibition of
glycosylation, can lead to altered trafficking of GPCRs and
many other proteins, but such global approaches have been
reviewed elsewhere [4] and are not addressed here. This
review focuses on approaches used over the past two
decades to specifically enhance the trafficking of particular
GPCRs to the plasma membrane, including addition of
sequences that improve receptor trafficking, removal of
sequences that impair receptor trafficking, co-expression
with receptor-interacting proteins and treatment with
drugs. Examples of these four distinct approaches are
discussed in the sections below.

Addition of sequences
One major approach used to enhance plasma membrane
expression of GPCRs in heterologous cells is the addition of
sequences to the receptors. The first example of this
approach was the engineering of an artificial signal
sequence onto the N-terminus of the b2-adrenoceptor [5],
which resulted in a several-fold increase in insertion of the
receptor into the plasma membrane. Artificial signal
sequences were subsequently used to enhance the surface
expression of other GPCRs, notably the CB1 cannabinoid
receptor [6,7]. It is presumed that signal sequences facili-
tate receptor interactions with the signal recognition
particle (SRP) and SRP receptor, which promote more
efficient receptor targeting through the ER and membrane
insertion [8].

Sequences other than traditional signal sequences have
also been grafted onto the N-termini of certain GPCRs to
enhance their surface expression. For example, in the case
of olfactory receptors (ORs), which are the largest subfam-
ily of GPCRs with more than 300 members in humans and
approximately 1000 members in rodents, a variety of N-
terminal sequences have been used to enhance plasma
membrane targeting. Most ORs are inefficiently trafficked
to the plasma membrane in heterologous cells [9], but
addition of N-terminal sequences from the serotonin 5-
HT3 receptor [10,11] or rhodopsin [12,13] markedly
enhanced heterologous surface expression of many ORs.
The use of ORs with modified N-termini has yielded sig-
nificant advances over the past few years in defining the
pharmacological and signaling properties of this large and
diverse family of GPCRs [9].

Although most sequences that enhance GPCR traffick-
ing have been added to the N-terminal region of the
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receptors, there are also examples of C-terminal additions
that enhance receptor surface expression. For example, the
rat gonadotropin-releasing hormone receptor (GnRHR)
has a very short C-terminal tail and exhibits poor surface
expression in most heterologous cells, whereas the catfish
GnRHR has a much longer C-terminal region and exhibits
robust surface expression in most cell types [14]. Addition
of the catfish GnRHR C-terminus to rat GnRHR results in
a striking improvement in the surface trafficking of the rat
version of the receptor [14]. Interestingly, the GnRHR C-
terminus is highly variable between species, suggesting
that this receptor regionmight have been subject to intense
evolutionary selection pressure as a mechanism for con-
trolling GnRHR expression and functionality [15].

Deletion of sequences
A second major approach used to enhance the surface
expression of certain GPCRs is the deletion of sequences
that result in either ER retention or misfolding of the
receptors. For example, following cloning of the g-amino-
butyric acid receptor GABABR1 [16], it was widely recog-
nized that the receptor was poorly trafficked and largely
non-functional when expressed in heterologous cells [17].
Truncation of the GABABR1 C-terminus or mutation of a
specific C-terminal motif (RSRR) relieved ER retention of
GABABR1 and led to robust plasma membrane expression
of the receptor [18–20]. Interestingly, the critical RSRR
motif on the GABABR1 C-terminus is similar to ER reten-
tion motifs identified on certain ion channels and other
transmembrane proteins [21]. However, despite the
improved trafficking of the GABABR1 RSRR mutant, this
receptor could not couple to G proteins unless it was co-
expressed with a related receptor, GABABR2, which seems
to be a required heterodimer partner of GABABR1 for
formation of functional GABAB receptors [20,22–24].

Analogous to the removal of C-terminal sequences from
GABABR1, removal of N-terminal sequences from GPCRs
was effective in enhancing receptor surface expression in
some cases. For example, truncation of 79 amino acids from
the N-terminus of the a1D-adrenoceptor (a1D-AR)
dramatically enhanced expression of receptor binding sites
[25] and plasma membrane localization [26]. By contrast,
grafting of the a1D-AR N-terminus onto a1A-AR or a1B-AR
markedly impaired surface expression of these receptors in
heterologous cells [26], suggesting that the a1D-AR N-
terminus either has an ER retention motif or has difficulty
in folding properly. Similar findings were observed for the
CB1 cannabinoid receptor, for which it was shown that
truncation of the N-terminus of the receptor greatly
enhanced receptor surface expression [7]. It has been
shown for both a1D-AR and CB1 that the N-terminal
truncations that enhance trafficking do not alter ligand
binding [7,26] and that the truncated mutants are there-
fore useful for achieving enhanced surface expression of
functional receptors in heterologous cells.

A key reason why some orphan GPCRs are still orphans
at present is because their poor surface expression in
heterologous cells has greatly hampered ligand-screening
efforts. However, application of the approaches described
above (addition or subtraction of sequences) has in
some cases already resulted in orphan receptors that are
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trafficked more efficiently to the plasma membrane and
are thereforemore suitable for functional experiments. For
example, GPRC6A is an orphan receptor that exhibits poor
surface expression in heterologous cells [27]. Given its
similarity to metabotropic glutamate receptors and
GABAB receptors, it has been assumed that the N-termi-
nus of GPRC6A is most likely the primary site of ligand
binding. GPRC6A is also very similar to a goldfish receptor
known as 5.24 that is trafficked well to the plasma mem-
brane in heterologous cells, and thus a chimera was cre-
ated in which the N-terminus of GPRC6A was fused to the
transmembrane and C-terminal regions of the 5.24 recep-
tor [28]. This mutant receptor, lacking the transmembrane
and C-terminal regions of wild-type GPRC6A, exhibited
efficient trafficking to the plasma membrane and enabled
identification of positively charged amino acids, such as
arginine, as putative ligands for GPRC6A [28].

Co-expression with partners
Most, if not all, GPCRs act primarily at the plasma mem-
brane in the native cell types in which they are endogen-
ously expressed. If a given GPCR exhibits poor surface
trafficking in heterologous cells, a common explanation is
that the heterologous cells must lack one or more receptor-
interacting partners that normally promote proper folding
and trafficking of the receptor in native cells. Thus, over
the past two decades there has been intense interest in
identifying GPCR-associated proteins [29–31] and many of
the interactions identified have indeed helped to explain
cell-specific differences in GPCR trafficking.

A major class of interactions that can greatly promote
GPCR surface expression in some cases is interactionswith
other GPCRs (also known as heterodimerization or hetero-
oligomerization) [32]. For example, as noted above, co-
expression of GABABR1 with GABABR2 results in massive
enhancement of GABABR1 surface expression [33]. One
consequence of this heterodimerization is believed to be
masking of the aforementioned ER retention motif present
on the GABABR1 C-terminus [19], providing an example of
how two distinct approaches (deletion of a sequence and co-
expression with an appropriate partner to mask a
sequence) can in some cases enhance the surface targeting
of a given GPCR via related mechanisms. There is strong
evidence that the interaction between GABABR1 and
GABABR2 is also essential for GABABR1 trafficking in
vivo, because the brains of GABABR2 knockout mice exhi-
bit a striking redistribution of GABABR1 and substantial
loss in GABAB receptor functional activity [34].

In addition to GABAB receptors, a number of other
GPCRs have been found to exhibit enhanced surface
expression in heterologous cells on co-expression and
association with other GPCRs [32]. For example, the afore-
mentioned a1D-adrenoceptor assembles with the a1B-adre-
noceptor [35,36] and b2-adrenoceptor [37] in amanner that
strongly promotes a1D-AR surface trafficking in heter-
ologous cells. Similarly, co-assembly of some ORs with
certain members of the adrenoceptor and purinoceptor
families can enhance OR surface expression in heter-
ologous cells [38,39]. Along these same lines, co-expression
of the taste receptor T1R1 with its related receptors T1R2
and T1R3 results in greatly enhanced functionality that is
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believed to correlate with improved surface expression,
although the work undertaken in this area so far has
focused more on assessing changes in receptor activity
and pharmacology following heterodimerization than on
addressing any changes in receptor trafficking [40].

It has been found that a variety of other interactions
besides receptor–receptor associations strongly regulate
GPCR trafficking and surface expression. Some of these
GPCR-interacting partners have been identified in genetic
screens. For example, in screens for mutations that affect
visual transduction in Drosophila, the cyclophilin-related
protein NinaA was identified as a rhodopsin partner
required for rhodopsin folding and transport [41,42]. Sub-
sequent work revealed that the vertebrate homolog of
NinaA, RanBP2, associates with vertebrate opsins to
regulate their folding, trafficking and surface expression
[43]. Similarly, screens for mutations that affect chemo-
sensory signaling in Caenorhabditis elegans identified the
protein odorant response abnormal 4 (ODR-4), which was
shown to associate with certain olfactory receptors [44,45].
It is not known, however, if the vertebrate ortholog of ODR-
4 plays a comparable role for any vertebrate receptors [46].
Other GPCR-interacting partners that promote receptor
trafficking include GEC1, which promotes surface expres-
sion of mammalian k-opioid [47] and prostaglandin EP3
receptors [48], RACK1, which enhances trafficking of
thromboxane A2 receptors [49], Usp4, which increases
plasma membrane expression of adenosine A2A receptors
[50], ATBP50, which regulates the transport of angiotensin
AT2 receptor to the cell surface [51], and DRIP78, which
enhances surface expression of angiotensin II AT1 recep-
tors [52].

A variety of transmembrane proteins, including recep-
tor activity modifying proteins (RAMPs), receptor trans-
porting proteins (RTPs), receptor expression enhancing
proteins (REEPs), melanocortin receptor accessory
proteins (MRAPs) and the M10 family of major histocom-
patibility (MHC) proteins, have been identified during the
past decade as GPCR-interacting proteins that promote
the surface expression of specific subsets of GPCRs. The
RAMPs were first identified as key regulators of the traf-
ficking and functionality of the calcitonin receptor-like
receptor (CRLR), an orphan receptor that was difficult to
study until the realization that associations with RAMPs
were required for its efficient plasma membrane localiz-
ation [53]. The three members of the RAMP family are now
known to interact with several class B GPCRs, as well as a
class C GPCR, the calcium-sensing receptor [54], to influ-
ence receptor trafficking and pharmacology [55]. The RTP
and REEP proteins were first identified in screens for
proteins that enhance OR functionality [56]. RTP1 and
RTP2 are selectively expressed in the olfactory epithelium
[56] and their roles in controlling OR trafficking have shed
light on the underlying reasons why ORs are efficiently
targeted to the plasma membrane in olfactory sensory
neurons but not in heterologous cells. Other members of
the RTP and REEP families have wider tissue distribution
patterns and have been shown to promote the surface
expression of T2R bitter taste receptors [57] and m–d opioid
receptor heterodimers [58] in heterologous cells. MRAP
and MRAP2 have been shown to associate with the mel-
anocortin 2 receptor (MC2R) and dramatically enhance
surface expression of this receptor in a variety of cells
[59–62]. Naturally occurring mutations to MRAP cause
defects in the trafficking and functionality ofMC2R, result-
ing in an inherited disorder known as familial glucocorti-
coid deficiency type 2 [59]. MRAPs have also been shown to
associate with MC3R and MC4R to reduce the signaling
activity and/or surface expression of these receptors [63], so
MRAP effects on receptor functionality appear to be re-
ceptor-specific. Finally, V2R vomeronasal receptors were
difficult to study in heterologous cells until the finding that
co-expression and interactions with M10 MHC molecules
and b2-microglobulin were capable of dramatically enhan-
cing V2R surface expression in heterologous cells [64].

Treatment with pharmacological chaperones
Studies have identified a number of naturally occurring
GPCR mutations that cause human disease by impairing
normal receptor trafficking. The approaches described
above for enhancing the surface targeting of GPCRs –

addition of sequences, deletion of sequences and co-expres-
sion with partners – can be useful in enhancing the surface
expression of GPCRs in heterologous cells, but these
approaches are not likely to be useful in a clinical setting
without further significant advances in gene therapy tech-
nology. Thus, there has been tremendous interest over the
past few years in identifying small molecules that can bind
to poorly trafficked, disease-causing GPCRs to enhance the
surfaceexpressionand functionalityof thesereceptors.Such
molecules are often referred to as pharmacological chaper-
ones, pharmacochaperones or pharmacoperones [65,66].

An example of the potential utility of pharmacological
chaperones comes from work on nephrogenic diabetes
insipidus (NDI), a rare X-linked disease characterized by
loss of anti-diuretic response to the hormone arginine-
vasopressin that results in an inability to concentrate
urine. NDI has been linked to a variety of mutations in
vasopressin V2 receptors (V2Rs), with the majority of these
mutations causing V2R to be retained in the ER and
degraded [67]. Treatment of cells with certain mem-
brane-permeant V2R antagonists restores cell surface
expression of ER-retained V2R mutants [65,68–70]. These
results are attributed to binding of the antagonists to the
already misfolded V2R in the ER, resulting in stabilization
of receptor structure and trafficking of V2R to the plasma
membrane. Clinical studies have indeed provided proof-of-
concept evidence that vasopressin receptor-targeted
pharmacological chaperones can have beneficial effects
in patients suffering from NDI [71].

Retinitis pigmentosa (RP) is another disease caused by
mutations to a GPCR. Characterized by progressive photo-
receptor degeneration and eventual retinal dysfunction,
RP has been linked to a number of mutations in various
gene products encoding nearly all of the components of the
visual signaling pathway, including rhodopsin [72].
Mutations in the gene encoding rhodopsin are observed
in one particular form of RP, autosomal dominant RP, and
result in amutated receptor that is retained intracellularly
with no 11-cis-retinal binding. Themost commonmutation
of this type is P23H [73–75]. P23H rhodopsin mutants can
be rescued by treatment of cells with an 11-cis-retinal
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analog, 11-cis-ring-retinal, resulting in restoration of re-
ceptor surface expression [76] in a manner that is analo-
gous to the rescue of V2R surface expression by V2R
antagonists described above.

A third example of disease-causing mutations that
affect GPCR trafficking comes from studies on GnRHR
mutations that can result in hypogonadotropic hypogonad-
ism (HH), a condition characterized by disrupted sexual
maturation. The GnRHR mutations that cause HH result
in misfolded receptors that are not properly targeted to the
plasma membrane. As in the above-described cases of
pharmacological chaperones for V2R and rhodopsin, it
has been found that certain GnRHR antagonists are
capable of rescuing mutant GnRH receptors by restoring
the surface expression and signaling activity of the mutant
receptors [66,77,78].

Conclusion and perspectives
The various approaches described in this review – addition
and deletion of receptor sequences, co-expression with
partners and treatment with pharmacological chaperones
– have been useful in enhancing the plasma membrane
expression of various GPCRs in heterologous cells
(Figure 1). Such enhanced surface expression of receptors
can greatly facilitate drug discovery efforts focused on
GPCRs as therapeutic targets. In addition to providing
insights into how to improve receptor surface trafficking in
heterologous cells, studies in this area have also shed
tremendous light on the regulation of the receptors in vivo.
Knockout studies for many of the receptor-associated
proteins described above revealed that these proteins
are critical for receptor regulation in native tissues. More-
over, recent advances in the characterization of pharma-
cological chaperones that enhance receptor trafficking in
heterologous cells can be directly translated to the clinic
and might be useful in future treatments for a number of
human diseases.
Figure 1. Approaches for enhancement of GPCR surface expression. When

expressed in heterologous cells, many GPCRs exhibit poor plasma membrane

trafficking, which can be enhanced using a variety of methods. For instance,

addition or deletion of receptor sequences can in some cases greatly improve

receptor surface expression. In other situations, co-expression with specific

receptor-interacting partners can strongly promote proper surface trafficking.

These receptor-interacting partners can either be transmembrane proteins, as

illustrated in this schematic figure, or cytoplasmic proteins that associate with

intracellular domains of the receptor. Finally, pharmacological chaperones can

release certain misfolded receptors from the endoplasmic reticulum and enhance

their trafficking to the plasma membrane.
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