
Evidence-based discharge nutrition to optimize preterm infant outcomes

Sarah N. Taylor, MD, MSCR Professor of Pediatrics and Epidemiology

Yale school of medicine

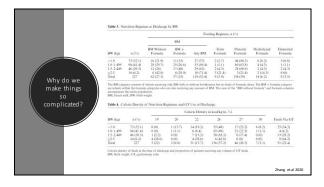
Disclosures:		
Role	Sponsors	
Consulting	Baxter	

O bjectives
 Determine the evidence available to direct discharge nutrition for preterm infants.
 Identify the health benefits of discharge nutrition options and how to develop a comprehensive, family-centered plan.
Yale school of medicine

Preemie FEED (Facilitating Enteral Education at Discharge) Form

 Goals and Recommendations for infants Born < 32 weeks Gestation</td>

 At Discharge, infant it taking _____ mi every _____ hours

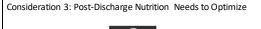

 At Diacharge, moder's 24-hours pumping volume is Dadequate (200 mi) _____ Low (<200 mi) _____ Morther's no longer pumping</td>

Adapted from University of California SanDiego

	for Infants Born < 32 week	s Gestation
At Discharge, infant is taking	ml every hour	5
At Discharge, mother's 24-hou	ur pumping volume is	
□ Adequate (≥ 500 ml)	Low (<500 ml)	Mother is no longer pumping
Feeding Plan (check applicable	e plan for this infant):	
(Other listed plans are options	s to consider)	
Mother's milk with human r	milk fortifier (HMF) to make	24 kcal/oz. (HMF is available through WIC for first 3 months)
Breastfeeding times per	r day (up to 30 minutes/ses	sion) and mother's milk with HMF to make 24 kcal/or
Mother's milk with postdisc	harge formula (PDF) powde	er to make 27 kcal/oz. and 2 PDF 27 bottles per day
Breastfeeding times per	r day (up to 30 minutes/ses	sion) and mother's milk with PDF powder to make 27
kcal/oz. and 2 PDF 27 bottles p	ber day	
Breastfeeding times per	r day (up to 30 minutes/ses	sion) and mother's milk with PDF powder to make 24
kcal/oz. and 2 PDF 24 bottles p	ber day	
PDF 27 kcal/oz.		
PDF 24 kcal/oz.		

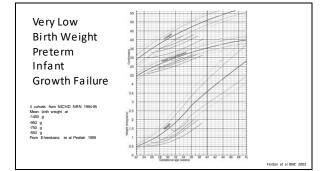
2

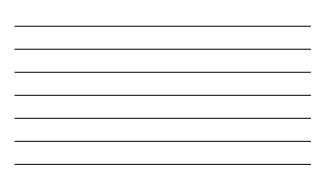
Goals and Recommendations f	or Infants Born < 32 week	a Gestation
At Discharge, infant is taking	ml every hour	\$
At Discharge, mother's 24-hou	r pumping volume is	
Adequate (≥ 500 ml)	Low (<500 ml)	Mother is no longer pumping
Feeding Plan (check applicable	plan for this infant):	
(Other listed plans are options	to consider)	
Mother's milk with human n	nilk fortifier (HMF) to make	e 24 kcal/oz. (HMF is available through WIC for first 3 months)
		ision) and mother's milk with HMF to make 24 kcal/oz.
		er to make 27 kcal/oz. and 2 PDF 27 bottles per day
		ision) and mother's milk with PDF powder to make 27
kcal/oz. and 2 PDF 27 bottles p		
		islon) and mother's milk with PDF powder to make 24
kcal/oz. and 2 PDF 24 bottles p	er day	
PDF 27 kcal/oz.		
PDF 24 kcal/oz.		
Other:		
General Mixing Instructions:		
Mother's Milk with HMF to 24		
Mother's Milk with PDF to mak		
Mother's Milk with PDF to mak		
PDF 27 kcal/oz bottle= 5 scoop:		
	s powder per 160 ml wate	
Other:	s powder per 100 mil wate	

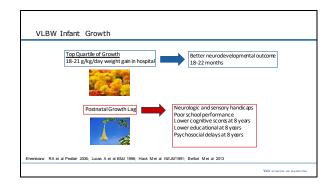


84% of US families initiate breastfeeding

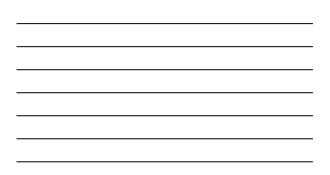
Growth

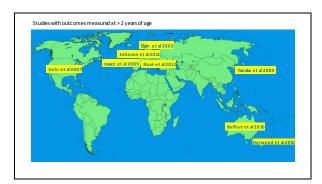

Family's Goal for Her Pregnancy Before Interrupted by Preterm Birth: Can We Help Achieve?



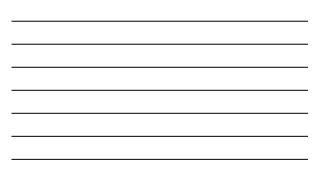


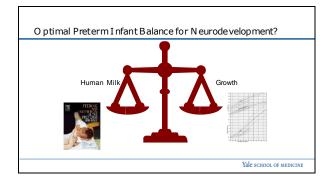
Neurodevelopment




nowth or body composition parameter at or prior to term age/ hospital discharge	Positively associated outcomes
Veight gain Transe in z score or SDS from birth to 36 weeks	Predicted PDI but not MDI at 18 months
hange in z score of als nom brin to so weeks	
hanze in z score or SDS from birth to dischanze	Predicted MDI but not PDI at 2 years Predicted normal standardizedneurologicevaluationat 5 years
nange in z scole of abs nom brief to discharge	
eight gain from birth to hosotal discharge	Predicted mental processing composites one at 5 years Predicted speed of processing at 4 years
reight gain from birth to nosptal discharge inear slope of weight sain from 1 weekto term age	Predicted speed of processingat 4 years Predicted BSID at 18 months
lear slope of weight gain from sweekto term age / eight growth velocity	Predicted BSID at 18 months Predicted BSID lower incidence of cerebral parky normal neurologic examinat
reight growth verocity	
ength at a specific time point	and less neurodevelopment impaiment at 18-22 months
engen at a specific eine poinc ength at hospital discharge	Predicted speech measured by BSID-II at 2 years
inger at nos prair ors enange	Predicted speech measured bybsion acz years
smaller difference from expeded length zecore from bith to hospitaldis danze	Predicted optimal neurodevelopmentaloutcomeat 2 years
ength gain from birth to hospital ds charge	Predicted oppman hebiodeveropmentarioda, omear 2 years Predicted speed of processingat 4 years
engen gain from birth to nospital discharge	
inear slope of length gan from 1 weekto term age	Did not predict systolic blood pressure at 4 yeas Predicted PDI but not MDI at 18 months
lead circumference gain	Predicaed Pol dochoc Mol at 18 monois
hange in 2 score or SDS from birth to discharge	Predicted composite motor and cognitives pres but not language scores at 1
lange in z scole of absiloni brior to discharge	months
	Predicted neuromotor and psychomotor assessment at 2 years
	Predicted normal standardizedneurologicevaluationat 5 years Predicted less risk di impaired mobility at 5 years
ead circumference min from bith to discharge	Did not predict faster speed of processing at 4 years
inear slope of head citcumference gain from 1 week to term age	Predicted PDI but not MDI at 18 months
ody M ass Index (BMI) gain	
near slope of BMI from 1 weekto term age	Predicted BSIDII at 18 months
t4ree mass gain	
at-free mass gain from birth to hospital discharge	Predicted faster speed of processing at 4 years

_


Is Human Milk Intake Associated with Preterm Infant Neurodevelopment?


Reference	Pinelli et al. (29)	Furman et al. [30]	Tanaka et al. [31]	Horwood et al. [32]	Smith et al. [33]	Johnson et al. (34)	Vohr et al. [35
As primary outcome of original study*							
VLBW only	+	+	+			+1	+1
A priori power calculation						2	
Baseline adjustment for SGA	20		5 = 1		14	1	14
Postnatal complication		*			(r	+	+
Maternal intelligence	+/-	+/-	+/	+/-	+/-	+/-	+/-
Social class or Socioeconomic status				*/	+/		*/
Child rearing environment	+/-	+/-		+/-	+		+/
Observers blinded to feeding protocol		+				+	
Effect size after adjustment		+	NA	+*	+'	+*	+*
Human milk definition	+	+	+		+	+	+
Human milk duration			+		+	+	+
Human milk fortification	+	+	2.52	-	12	12	127
Human milk feeding data source							
Formula type							+

Mother's Milk a	und Preterm In	fant Neurodevel	opment	
Study	Population	Human Milk Dose	Age at evaluation	Outcome
Vohr et al 2007 (n=773)	ELBW	Breast milk for hospitalization	30 months	For every 10 ml/kg/day increase in breast milk, MDI increased by 0.59, PDI by 0.56, and total behavior percentile score by 0.99 by BSID-II
Tanaka et al 2008 (n=18)	VLBW	More than 80% breast milk feeds in first month	5 years	Breastled group had significantly higher sequential processing on KABC, Day- NightTest, KRISP, Motor Planning Testscores
Rozé et al 2012 (n=1462)	Bom 22-32 weeks PMA EPIPAGE Cohort	Breastfeeding at time of discharge	5 years	Breastfeeding at discharge associated with a 35% lower risk for suboptimal neurodevelopment by KABC
Belfort et al 2016 (n= 180)	Bom < 30 weeks/ <1250 g	First 28 days with >50% breast milk	7 years	Predominant breast milk feeding in first 28 days significantly associated with better IQ by WASI, mathematics by WRAT, working memory, and motor function tests by MABC
Horwood et al 2001 (n= 280)	VLBW	Duration of breast milk feeding	7-8 years	Increasing duration of breast milk feeding significantly associated with increased verbal & performance IQ by WISCR. <u>Breastfed for > 2 mor adjusted mean verbal</u> <u>IQ.6-points bigher than those with no breast milk</u> .
Elgin et al 2003 (n= 130)	LBW	>30% breast milk in neonatal ward	11 years	Lack of breast milk associated with a significant mean reduction in IQ by WISC-R but this was no longer significant when adjected for parental education
Johnson et al 2011 (n=307)	Bom <26 weeks PMA	Received breast milk in NICU	11 years	Breast milk in NICU significantly associated with higher reading scores
Isaacs et al 2010 (n=50)	Bom ≤ 30 weeks PMA	% maternal milk for hospitalization	Adolescence	Mik dose significantly associated with Verbal IQ (specifically in boys), performance IQ and full scale IQ in boys only by WISC-III and WAIS-III

Significant risk adjustments for infants in the United States

 Ever Breastfeeding
 >6 mo

 11% \$\u03c6 Learning
 comp

 12% \$\u03c6 Learning
 19% \$\u03c6 Learning

 12% \$\u03c6 Learning
 19% \$\u03c6 Learning

 13% \$\u03c6 Utilits media
 30% \$\u03c6 Learning

 29% \$\u03c6 Creative colitis
 22% \$\u03c6 Learning

 22% \$\u03c6 Learning Learning
 10% \$\u03c6 Learning

 33% \$\u03c6 Type 2 diabetes mellitus
 64% \$\u03c6 Learning Learning

 64% \$\u03c6 Learning Learning Learning
 10% \$\u03c6 Learning

 93% \$\u03c6 Learning Learning Learning
 10% \$\u03c6 Learning

 93% \$\u03c6 Learning Learning
 10% \$\u03c6 Learning

 94% \$\u03c6 Learning Learning
 10% \$\u03c6 Learning

 94% \$\u03c6 Learning Learning
 10% \$\u03c6 Learning

 95% \$\u03c6 Learning Learning
 10% \$\u03c6 Learning

 95% \$\u03c6 Learning Learning
 10% \$\u03c6 Learning

 95% \$\u03c6 Learning Learning
 10% \$\u03c6 Learning

 198 \$\u03c6 Learning
 10% \$\u03c6 Learning

 198 \$\u03c6 Learning
 10% \$\u03c6 Learning

 198 \$\u03c6 Learning
 10% \$\u03c6 Learning

 10% \$\u03c6 Learning
 10% \$\u03c6 Learning

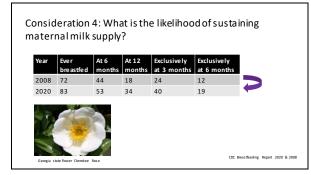
 10% \$\u03c6 Learnin

<u>>6 months exclusive breastfeeding</u> <u>compared to <4 months exclusive</u> 19% ↓Lower respiratory tract infection 30% ↓Severe or persistent diarrhea

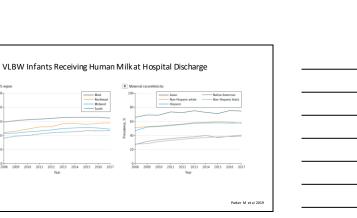
A Fanti figure AH RQ, 2007 & AAP 2022

Significant Risk Adjustment for Mother

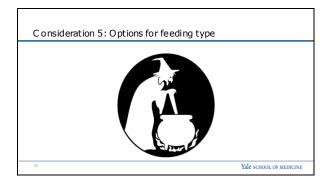
Anv or Ever 22% ↓ Breast cancer 30% ↓ Ovarian cancer 11% ↓ Endometrial cancer 9% ↓ Thyroid Cancer

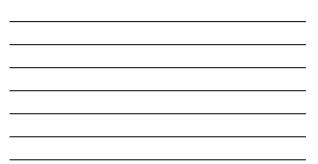

Longer vs Shorter 32% \downarrow Type 2 diabetes mellitus 78% \downarrow GDM and Type 2 diabetes

 $\frac{\text{Hypertension}}{<6 \text{ months}, 8\% \downarrow}$ $6-12 \text{ months}, 11\% \downarrow$ $>12 \text{ months}, 13\% \downarrow$

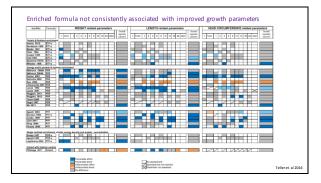


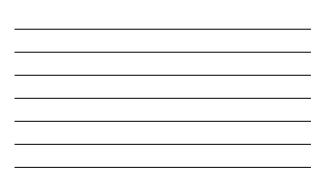
AAP 2022

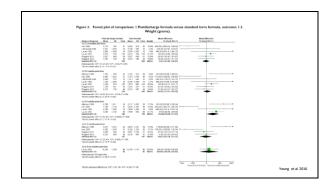

Table 4 Days of Upper Respi	iratory Infections		
Time period	Human milk mean ± SD (range), median	Formula mean ± SD (range), median	p
Discharge-1 mo	0.6±1.7 (0-7), 0	3.5±5 (0-20), 2	< 0.025
Discharge-3 mo	6.6±7 (0-23), 5	14.6±15 (0-46), 9	0.06
Discharge-7 mo	17.6 ± 15 (0-53)	38±26 (9-96)	< 0.025
Discharge-12 mo	42.7 ± 28 (15-96)	54.8±36 (9-121)	ns

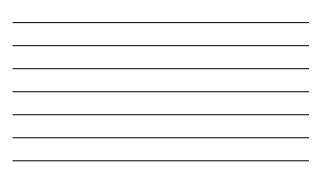


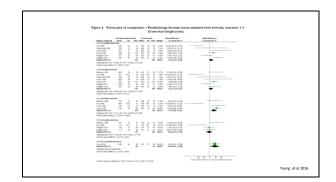
A U

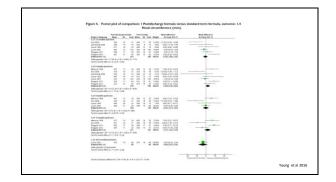


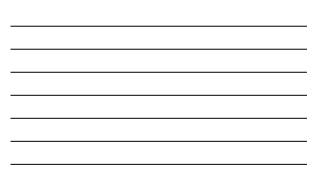


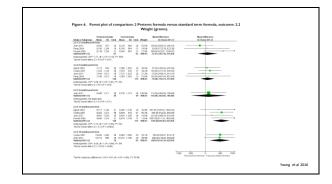


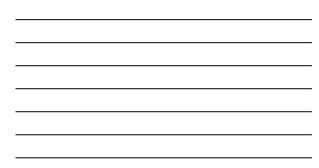


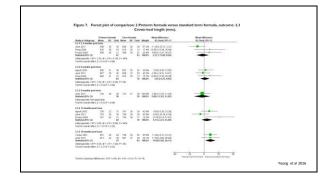


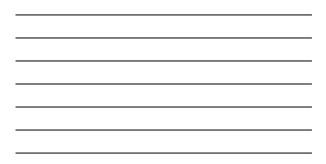


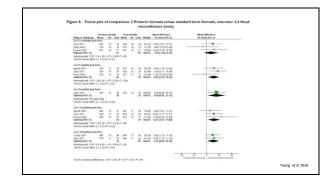


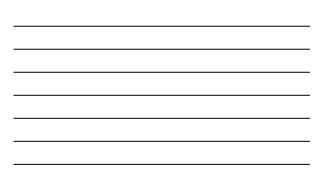










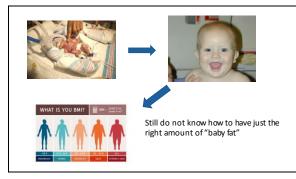


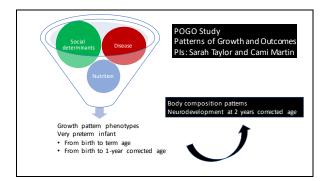


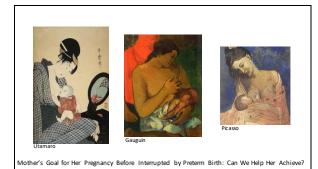
Dutcomes	Anticipated absolute effects* (95% CI)	Number of participants (studies)	Quality of the evidence (GRADE)	
Postdischarge form	ula compared wit	hstandard term for	nula after hospital d	ischarge
Development - Bayley Scales of Infant Devel- opment II: Mental De- velopment Index	(3.24 lower to 5.04	184 (1 RCT)	⊕⊕⊕⊕ High	
Development - Bayley	MD 1.44 lower	143	after hospital dischar	ge
scales of Infant Devel- opment II: Mental De- velopment Index	(6.22 lower to 3.3 higher)	5 (2 HCTS)	High	
				Young et

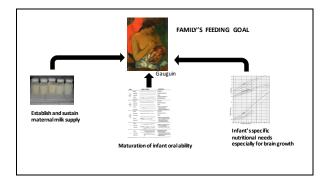
What about mother's milk?

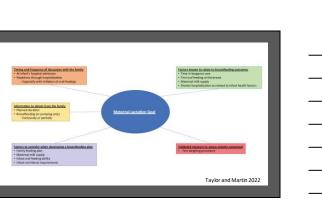
Study	Population	Intervention	Outcomes reaching statistically significance
O' Connor et al 2008	39 ≥80% mother's mik and 750-1800 g at birth infants	Protein 0.8g/kg Calories 10-15/kg Fortified with HMF 50% of feeds for 12 weeks	Intervention infants at 4-6 months: • Greater vikual development Intervention infants at 12 months: • Heavier by 1.2 kg • Longer • Greater bone mineral content infants born <1250 g at 12 months: • Greater boad circumference Intervention infants at 18 months: • No difference in Bayley II scale
Zachariassen et al 2011	320 infants born 24- 32 weeks PMA receiving breastmilk at discharge	Protein 1.37 g/day Calories 17/day For 4 months	At 12 months: • No difference in growth
De Cunha et al 2016	53 exclusively breastfed VLBW infants	Protein 0.5g/day Calories 20/day For 4-6 months	At 12 months: • No difference in Bayley II Iscale • No difference in developmental delay


- ESPGHAN 2006 "feeding Preterm Infarts After Hospital Discharge" Monitor closely Measure weight, length, head dircumførence to identifyinfants with poor growth AGA infants should be breast-fed when possible When formula-fed, seer digalar infart formula I If SGA at discharge, supplement with human milk fortfier or enriched formula U critit at est 40 weeks' Potentially until 52 weeks'

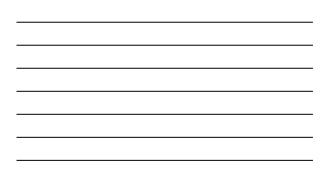

- Focus on growth: To maintain growth velocity 25-35 g/day (term age to 3 months)
- To maintain growth at a specific z-score or percentile
 To achieve growth at a specific z-score (catch-up growth)

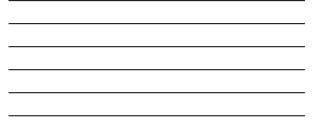

By 40-52 weeks postmenstrual age

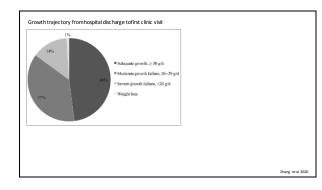

- · Preterm infants without significant brain, lung, cardiac disease develop the ability to
- "feed" to grow (at least calories).

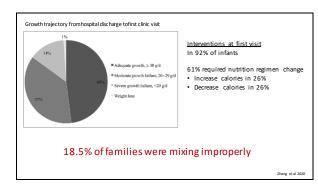

Likely plays a role in the mixed results from post-discharge nutrition RCTs






Barriers/Reasons	Assessment	Tools
Not receiving enough milk by direct breastfeeding ¹²	 Assess latch Evidence of swallowing Optimize any breastfeeding that is occurring by teaching breast massage and breast compression²² 	Electronic Scales—prefeeding and postfeeding test weighs ^{71,72}
infant not latching/fussy ⁷⁸	 Assess latch³⁷ b. Teach strategies to latch before infant is crying c. May start with a bottle feed and then finish at the breast 	Nipple Shields can be an essential tool but there must be a plan for monitoring and weaning ⁷¹
Paor growth ^{TP}	 Assess for proportional growth on multiple data points Obtain detailed feeding history 	Growth charts Fortification plans ⁷⁶
Low milk production ⁸⁰	 Quantity at each pumping session Frequency of pumping Frequency of breastfeeding 	Breast pumps ⁴⁰ Pumping/feeding log
Maternal exhaustion ⁰¹	 a. Obtain detailed feeding history b. Assess support at home 	Avoid triple feeding (breastfeed, pump, bottle feed at each feeding time) Social support
Maternal anxiety ³⁰	 Explore reasons for anxiety b. Assess for depression c. Assess for posttraumatic stress disorder from NICU admission¹² 	Assess depression ⁸² Psychosocial support ¹⁰
Conflicting information ⁹⁰	 Assess the concern b. Assess from where is the information is coming? 	Family involvement Peolistrician Lactation specialist Peer support ¹⁰


Table 1 Tools to support high risk oral fe	eding after hospital discharge	
Tools	Use	Considerations
Breast pumps	Breat pumps are critical in NEU to maintain milk supply while infant is unable to nurse. Even after discharge, most mothers need to pump for several feeds as infants transition to direct breastfeeding	A hospital grade double electric journp is considered the ideal way to express milk for locatariany mothers who are separated from their infants and require full replacement of hreastifeeding to pumping ¹⁰ . Hote breast journp should be arranged before the breast journp should be arranged before MEU disharge and may not want to hear the noise of a pump. Changing to manual or silicone pump with proper teaching may reduce anxiety.
Digital scales	Test weighs are performed by weighing the infant before and after a feed to determine how much breast milk infant consumed during a breastfeed TCH	Not all digital scales are accurate. ²⁷ It can create undue anxiety if infant does not gain enough weight and parents may not learn infant's cues and signs of satiety. A clinical trial of test weighing at home did not show improved breastfeeding ³⁴
Nipple shields	A nipple shield is a thin piece of silicone that is placed on mother's areals and nipple. It is a short-term tool when baby is having trouble fathing or due to maternal reasons such as nipple pair, flat nipples, and engrogement	Ongoing lactation support is essential to support use and wearing off nipple shield. Improper use of nipple shield could decrease breastfeeding duration??
Slow flow or specialty nipples	Infant's ability to self-regulate flow may be compromised so custom flow restrictions may be warranted to meet each infant's unique feeding needs ⁽⁴⁾	High-risk infants using variable flow nipples should be followed up by feeding specialists such as speech pathologists ⁷³


Outcomes	Nutrition
Bone mineralization at 12 months CA	 50% of feeds with HMF for 12 weeks post-discharge (970mm 0 et al 2008, more A et al 2009) Otherwise, no evidence of required calcium/phosphorus post- hospital discharge Maintain normal serum value of phosphorus (>5.6 mg/dL) and 25(OHI) (>30 ng/mL)
Growth	Difficult because post-NICU studies have compared feed type rathe than specific nutrients. Feedto grow 25-35 gridgby and then to maintain percentile line (do not lose trajectory) and maintain or improve proportion In-hospital growth relates to neurodevelopment
Neurodevelopment	Balance of milk nutrients/bioactives and growth trajectory
I ron stores	3-5 mg/kg/day ferrous sulphate until iron-containing foods
Vitamin D stores (and potentially other vitamins)	At least 400 IU/day (and up to 1000 IU/day) Other vitamins need greater study

Developed Nutrition NICU G	
Table 1. Patient Demographics.	
Characteristic	n (mean or range)
Number of patients	227
Mean gestational age (range)	30.12 wk (23-40)
Male, n (%)	103 (45.4)
Racial group, n (%)	
African American	120 (52.9)
Caucasian	89 (39.2)
Hispanic	12 (5.3)
Mean BW (range)	1.31 kg (0.45-3.75)
BW classification, n (%)	
LBW < 2.5 kg	215 (94.7)
Very LBW < 1.5 kg	167 (73.6)
Extremely LBW < 1 kg	75 (33)
Mean discharge gestational age	40.75 wk (33.4-65.1)

Clinical Application of Preterm Infant Discharge Nutrition Evidence

- Know family's feeding goal
- · Protect maternal milk intake Monitor growth
- Target positive growth trajectory "Feed to Grow"
- Consider the infant's other needs based on disease, growth pattern, and previous nutrition
- Simplify when able (for parents and pediatricians)

The Yale Neonatal NOuRISH Team Nutrition Outcomes Research In Sustaining Mother and Infant Health

Investigators: Caty Buck, Veronika Shabanova, Angela Montgomery Team: Ruthfirst Ayande, Christine Henry, Tessa Kehoe, Terri Motrzehi, Taryn Donovan DinaPasacreb, James Lawrenee, Ellery Neidfere, Ambika Bhatnager, Justyna Breuler, Gabi Wiggill, humidun Oyebode

NIH Eunice Kennedy Shriver National Institute of Child Health and Human Development

Allen Feandation Inc.

Haup Fund

0 0

sarah.n.taylor@yale.edu